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INTRODUCTION

Object recognition is difficult because there is no simple relation between

an object's properties and the retinal image.  Where the object is located, how it

is oriented, and how it is illuminated also affect the image.  Moreover, the

relation is under-determined: multiple physical configurations can give rise to

the same retinal image.

In the case of object color, the spectral power distribution of the light

reflected from an object depends not only on the object's intrinsic surface

reflectance but also factors extrinsic to the object, such as the illumination.  The

relation between intrinsic reflectance, extrinsic illumination, and the color signal

reflected to the eye is shown schematically in Figure 1. The light incident on a

surface is characterized by its spectral power distribution E(λ).  A small surface

element reflects a fraction of the incident illuminant to the eye.  The surface

reflectance function S(λ) specifies this fraction as a function of wavelength.  The

spectrum of the light reaching the eye is called the color signal and is given by

C(λ) = E(λ)S(λ).   Information about C(λ) is encoded by three classes of cone

photoreceptors, the L-, M-, and S-cones.

The top two patches rendered in Plate 1 illustrate the large effect that a

typical change in natural illumination (see Wyszecki and Stiles, 1982) can have

on the color signal.  This effect might lead us to expect that the color

appearance of objects should vary radically, depending as much on the current

conditions of illumination as on the object’s surface reflectance.  Yet the very

fact that we can sensibly refer to objects as having a color indicates otherwise.

Somehow our visual system stabilizes the color appearance of objects against

changes in illumination, a perceptual effect that is referred to as color

constancy.
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Insert Figure 1 about here.

Insert Plate 1 about here

Because the illumination is the most salient object-extrinsic factor that

affects the color signal, it is natural that emphasis has been placed on

understanding how changing the illumination affects object color appearance.

In a typical color constancy experiment, the independent variable is the

illumination and the dependent variable is a measure of color appearance

(Helson, 1938; Helson and Jeffers, 1940; Helson and Michels, 1948; Burnham,

Evans and Newhall, 1957; Hunt, 1950; McCann, McKee and Taylor, 1976;

Arend and Reeves, 1986; Arend, Reeves, Schirillo and Goldstein, 1991;

Valberg and Lange-Malecki, 1990; Brainard and Wandell, 1992; Bauml, 1994;

Bauml, 1995; Lucassen and Walraven, 1993; Lucassen and Walraven, 1996;

Brainard, Brunt and Speigle, 1997; Brainard, 1998).  These various

experiments employ different stimulus configurations and psychophysical tasks,

but taken as a whole they support the view that human vision exhibits a

reasonable degree of color constancy.

Recall that the top two patches of Plate 1 illustrate the limiting case where a

single surface reflectance is seen under multiple illuminations.  Although this

case illustrates the effect of the illuminant, it fails to capture an essential feature

of the computational problem faced by a visual system that attempts to achieve

color constancy.  This is the ambiguity created because of the interaction

between illuminant and surface reflectance, an ambiguity illustrated if we

consider Plate 1 in its entirety.  The rendered patches in the second row of the

plate show the effect of the same illuminant change on the information encoded

about an additional surface.  Note that when seen under the first illuminant, this

second surface presents the same spectral signature as does the first surface

under the second illuminant.
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When we consider both illuminant and surface variation, the essential

ambiguity underlying color constancy emerges: how can the visual system

determine which object is present in the world if the information reaching the

eye is identical for two different object-illuminant configurations?  Clearly color

constancy is not possible in general, since the visual system cannot distinguish

the two simple scenes rendered in the top right and bottom left patches of Plate

1.

Given that color constancy is not possible in general, it makes little sense to

provide a simple answer to the question of how color constant human vision is.

More sensible is to investigate constancy for some specified ensemble of

scenes (Maloney, 1999).  Of particular interest are ensembles that are

representative of scenes we encounter in daily viewing.

In this chapter, our aim is to link two lines of research.  The first is theoretical

work on the computational problem of color constancy.  The goal of

computational theories is to define particular ensembles of scenes in which

some degree of color constancy is possible, and to express algorithms that

achieve constancy for these ensembles.  Computational theories of color

constancy stand independent of their relevance to human vision.  None-the-

less, we have found that the computational work provides useful guidance for a

research program designed to understand human color vision. Our treatment of

the computational work is intended primarily to clarify how computational

models can be elaborated to make predictions about human performance.

The second line of research is empirical measurements of human color

constancy made in our laboratory.  Here the emphasis is on studies of

performance for stimulus conditions closely related to natural viewing and on

measurements that connect to computational theory.
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COMPUTATIONAL THEORY

Most computational theories of color constancy (e.g. Buchsbaum, 1980;

Maloney and Wandell, 1986; Lee, 1986; D'Zmura and Lennie, 1986; Trussell

and Vrhel, 1991; Funt and Drew, 1993; D'Zmura and Iverson, 1993; D'Zmura,

Iverson and Singer, 1995; Brainard and Freeman, 1997; Finlayson, Hubel and

Hordley, 1997) share the same basic two step framework.  In the first step, the

image is analyzed to yield an estimate of illuminant properties.  In the second

step, this estimate is used to process the light reflected to the eye from each

surface.  The second step produces a description of surface properties that is

approximately independent of the actual illuminant.  Within this two step

framework, individual theories are distinguished by the ensemble of scenes to

which they are meant to apply and by how they accomplish each step.

To illustrate how computational work can provide a basis for developing

statements about human performance, it is useful to consider one theory in

some detail.  For this illustrative purpose we have chosen Buchsbuam’s classic

(1980) theory, expressed with respect to the human visual system.

As emphasized above, any computational theory must define a restricted

ensemble of scenes to which it applies.  In the case of Buchsbaum’s theory a

single scene in the ensemble consists of a collection of flat matte surfaces

arranged in a single plane and illuminated diffusely by spatially uniform

illumination.  Light from each surface in the scene is reflected to the eye.  The

eye contains three classes of cone photoreceptors (L-, M-, and S-cones) that

encode the spectral properties of the light reflected from each surface to the

eye.  Thus the image may be specified by the quantal absorption rates of the L-,

M-, and S-cones at each image location.  This simplified ensemble of visual

scenes is sometimes referred to as the Mondrian world because of the
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resemblance of its individual scenes to paintings by the Dutch artist Piet

Mondrian (Land and McCann, 1971; see also Maloney, 1999).

For any scene from the Mondrian world, we can describe the spectral power

distribution of the illuminant by a function of wavelength E(λ) and the spectral

reflectance of each surface by a function Sj(λ).  The light reflected from the jth

surface to the eye then has spectral power distribution Cj (λ) = E(λ)Sj(λ).  It is

convenient to discretize these spectral quantities and express them as vectors

(e.g. Wandell, 1987; Brainard, 1995).  Thus we can use the vector e to describe

E(λ), where e is an Nλ–dimensional column vector.  The entries of e represent

the power of the illuminant at Nλ sample wavelengths λn spaced evenly across

the visible spectrum.  Similarly we can represent the surface reflectance

functions by the Nλ–dimensional column vector sj, where the nth entry of sj is

Sj(λn).  Given this representation the spectral power distribution reflected to the

eye from the jth surface is

cj = diag(e) sj = diag(sj) e, (1)

where the function diag() creates a diagonal matrix with the entries of its

argument on the diagonal.

The information about the spectrum of light encoded by a single class of

cones is the rate at which photons are absorbed by the photopigment contained

within the cone.  This rate may be computed from the cone’s spectral sensitivity.

Let L(λ) be the spectral sensitivity of the L-cones, M(λ) the spectral sensitivity of

the M-cones, and S(λ) the spectral sensitivity of the S-cones.  Form the 3 by Nλ

matrix R, where the nth entry of the first row of R is L(λn), the nth entry of the

second row is M(λn), and the nth entry of the third row is S(λn).  We can then

compute the quantal absorption rates of the three classes of cones in response

to a spectral power distribution cj through the equation

rj = R cj (2)
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where rj is a three-dimensional column vector whose entries are the quantal

absorption rates for the L-, M-, and S-cones respectively.

A feature of the Mondrian world is that the minimal spatial structure of the

images does not carry information about the illuminant.  Thus we can

summarize the information available from the image about the illuminant by the

list of quantal absorption rates {rj}.  In addition, the ordering of the elements in

the list is not important.  We refer to the list {rj} as the color statistics  of the

image.

It is straightforward to show that when we restrict attention to the Mondrian

world, color constancy remains an underdetermined computational problem.  It

is possible to choose two illuminants and two collections of surfaces that

produce identical color statistics.  Thus Buchsbaum added additional

constraints to the ensemble of scenes to which his theory applies.  The first

constraint concerned the spectral form of individual illuminants and surfaces.

Rather than allowing arbitrary choices of e and the sj, Buchsbaum assumed that

both illuminants and surfaces were constrained to lie within three-dimensional

linear models.  For illuminants, this assumption is that the illuminant e can be

written as e = Be we where Be is an Nλ by 3 dimensional matrix and we is a three

dimensional column vector.  The columns of the matrix Be are referred to as the

basis vectors for the model, while the entries of the vector we are referred to as

the model weights for the particular illuminant e.  For surfaces, the linear model

assumption is similar.  In this case we write sj = Bs wsj with where Bs is an Nλ by

3 dimensional matrix and wsj is a three dimensional column vector.  We can

combine the linear model constraints with Equations 1 and 2 to obtain

rj = R cj = R diag(e) Bs wsj = R diag(sj) Be we . (3)

There is considerable evidence that small-dimensional linear models provide a

reasonable description of many illuminants and surfaces (e.g. Judd, MacAdam
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and Wyszecki, 1964; Cohen, 1964; Maloney, 1986; Parkkinen, Hallikainen and

Jaaskelainen, 1989 Jaaskelainen, Parkkinen and Toyooka, 1990; Romero,

Garcia-Beltran and Hernandez-Andres, 1997; see Maloney, 1992)

A second constraint on the scenes was that the spatial average of the

surfaces in any particular scene was constant across scenes.  This is often

referred to as the gray world assumption.

To understand how color constancy is possible in a Mondrian world with

scenes constrained as described above, let s be the spatial average of the sj

and r  be the spatial average of the corresponding rj.  Then we can write

r  = R diag(s) Be we . (4)

This follows because the spatial averaging operation commutes with the linear

process of image formation described by Equation 3.  If the spatial average of

the surface reflectance is known, then Equation 4 may be inverted to solve for

the illuminant:

ê  = Be  Ms
-1 r (5)

where Ms is the three-by-three matrix given by [R diag(s) Be].  The matrix Ms is

invertible because the dimension of the linear model for surfaces (3) is matched

to the number of human cone types (L, M, and S).

Given the estimate of the illuminant ê  computation of the individual sj is

obtained through

sj = Bs  Me
-1 rj (6)

where Me = [R diag( ê ) Bs].  The matrix Me is invertible because the dimension of

the linear model for illuminants (3) is also matched to the number of human

cone types (L, M, and S).
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Equation 5 is the key to Buchsbaum’s algorithm.  By assuming that the

spatial average of surface reflectances in the scene s is known, it is possible to

form the matrix Ms and apply Equation 5 to estimate the illuminant. Although

Buchsbaum’s theory is designed for the Mondrian world with linear model

constraints, the estimation procedure may be applied to any set of image data.

The estimate will be accurate to the extent that a) the scene conforms to the

Mondrian world assumptions, b) the linear models Be and Bs describe the

illuminant and surfaces that comprise the scene, and c) the actual spatial

average of surfaces matches the assumed s.

Note that in Equation 5 the illuminant estimate depends on the scene only

through the spatial average of the receptor responses r .  In this sense, the

spatial average summarizes the scene with respect to the illuminant estimate

obtained by Buchsbaum’s algorithm.  Several other theories (e.g. Maloney,

1986; Forsyth, 1990; Trussell and Vrhel, 1991; D'Zmura, Iverson and Singer,

1995; Brainard and Freeman, 1997; Finlayson, Hubel and Hordley, 1997) are

also designed for the Mondrian world.  As with Buchsbaum’s theory, the

algorithms associated with these theories work in two steps, first estimating the

illuminant and then using the illuminant estimate to obtain surface reflectance

estimates.  These theories differ from Buchsbaum’s primarily in what information

is used to make the illuminant estimate.  For example, the illuminant estimate

returned by Maloney and Wandell’s (1986) algorithm depends on the color

statistics only through its covariance matrix, while that returned by Forsyth’s

(1990) algorithm depends only on the convex hull of the color statistics.  As we

will see below, understanding which properties of the color statistics affect an

algorithm’s estimate makes possible empirical tests of the algorithm’s

usefulness as a model of human performance.
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Although we will not consider them further in this chapter, it is worth noting

that there is a growing literature on theories that operate for richer scenes than

those within the Mondrian world (Lee, 1986; D'Zmura and Lennie, 1986;

Hurlbert, 1986; Tominaga and Wandell, 1989; Funt and Drew, 1993; D'Zmura

and Iverson, 1993; see Hurlbert, 1998; Maloney, 1999).  The algorithms

associated with these theories generally estimate the illuminant using both

information contained in the color statistics and information contained in the

spatial structure of the image.

Linking computation and performance

How can we employ Buchsbaum’s (1980) theory (or any computational

algorithm) as a model of human performance?  It is not entirely obvious how to

proceed.  For example, the algorithm produces estimates of the illuminant

spectral power distributions and surface reflectance functions, whereas human

observers make psychophysical judgements.  Such judgments are not of the

direct spectral functions but rather assess, in one way or another, the color

appearance of illuminants and surfaces in the scene.  Thus the algorithm output

and human judgements are not commensurate.  To develop an algorithm into a

model requires additional linking theory.

Suppose that σ is a vector whose entries describe the perceptual

experience of color.  To connect an algorithm such as Buchsbaum’s to human

performance, we can suppose that σ is related to estimated surface reflectance

ŝ by some unknown but fixed function f(), so that σ =  f ( ŝ).  Although the form

of f() is unknown, we will assume that it does not depend on context and that it

is one-to-one.  This simple linking assumption does not allow us to predict color

names from algorithm output.  But it does allow the following general prediction

to be made about the relation between human performance and algorithm

output: two surfaces seen in the context of different images should appear the
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same if and only if the algorithm estimates the same surface reflectance for

each surface.  We will refer to this idea as the match-prediction linking

hypothesis.

If we accept the match-prediction linking hypothesis, we can make

predictions about human performance.  Using a psychophysical procedure we

establish pairs of stimuli that, when seen in the context of different images,

appear the same.  A typical procedure would be asymmetric color matching

(e.g. Stiles, 1967; Burnham, Evans and Newhall, 1957; Arend and Reeves,

1986; Brainard and Wandell, 1992; Brainard, Brunt and Speigle, 1997).  Given

pairs of stimuli that match across contexts, we ask whether the surface

reflectances estimated by an algorithm for these stimuli also match.  To the

extent that they do, the algorithm provides a good description of human

performance.

The difficulty with taking this approach is that an algorithm’s specific

estimates depend on a number of parameter choices.  For example, in

Buchsbaum’s algorithm the choice of linear models Be and Bs will affect the

estimated surface reflectances.  These would either have to be set through

parameter search or clever guess.  Although this is not necessarily prohibitive, it

seems desirable to investigate more directly whether the core principles of a

computational theory can be used to understand human performance.

For Buchsbaum’s algorithm, Equation 5 shows that the illuminant estimate it

returns depends on the image only through the spatial average r ; if we have

two different images with the same spatial average (r), the algorithm will return

the same illuminant estimate.  In addition, the surface reflectance function

estimated at a location depends on the image only through the light reflected

from the surface at that location (rj) and the illuminant estimate (see Equation 6).

Thus if two images have the same spatial average and we embed a surface that
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reflects the same light to the eye in each image, Buchsbaum’s algorithm is a

candidate model for human performance only if the two surfaces appear the

same.  This prediction holds independent of the choice of linear models Be and

Bs.

In the next section we consider experiments that measure human color

constancy, with the goal of connecting the experiments to the ideas discussed

above.

COLOR CONSTANCY IN THE NEARLY NATURAL IMAGE

The effect of the illuminant

To allow precise stimulus specification and control, many experiments that

attempt to quantify color constancy employ rather simple stimuli.  One

configuration that has been used extensively in recent years is a computer

simulation of a scene consisting of a flat matte surfaces seen under diffuse

illumination (e.g.  Arend and Reeves, 1986; Arend, 1993; Troost and de Weert,

1991; Brainard and Wandell, 1992; Bauml, 1994; Bauml, 1995; Lucassen and

Walraven, 1996).  These stimuli are essentially instantiations of scenes from the

Mondrian world.  Recent experiments on color appearance also employ closely

related stimuli (e.g. Wesner and Shevell, 1992; Jenness and Shevell, 1995;

Singer and D'Zmura, 1994; Delahunt and Brainard, 2000).

When Mondrian world scenes are simulated on monitors, however, they

appear somewhat artificial.  This is probably not due to problems of the

simulation but rather to the fact that the scenes that match the Mondrian world

assumptions are rare in nature and the visual system may not treat them in the

same way as it does natural images.  Indeed, one can argue that seemingly

simple scenes are very difficult for the visual system to parse.  We might expect

that before using color statistics to estimate the illuminant, the visual system
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attempts to determine which regions are objects and which are light sources,

which image variations represent illumination boundaries, and which represent

variations in reflected light due to geometric factors (see Gilchrist et al., 1999;

Adelson, 1999).  If this is the case, the processes that normally make these

determinations may produce unstable or conflicting results when presented with

impoverished stimuli.  As a result, performance measured for simple stimuli

could be much more difficult to understand than performance for stimuli which

provide a rich set of cues.

These considerations motivated us to study color constancy using stimuli

consisting of actual illuminated surfaces, configured in three-dimensions.  By

doing so, we hoped to study constancy as it operates in natural viewing.  In the

work reported here, however, we focus on results obtained using scenes that

are (approximately) uniformly illuminated.  This simplifies the comparison of

human and algorithmic performance, since it is not necessary to consider

processes that segment the image into distinctly illuminated regions.

The apparatus used in the first set of experiments is an entire room, shown

schematically in Figure 2 and described in detail elsewhere (Speigle and

Brainard, 1996; Brainard, Brunt and Speigle, 1997; Brainard, 1998).  The

ambient illumination of the room is produced by 3 sets of computer controlled

stage lamps arranged in four triads.  One set has red filters, one has green

filters, and one has blue filters.  The light from each triad passes through a

diffuser to minimize colored shadows.  By varying the intensities of the three

sets of lamps, we can vary the spectral power distribution of the ambient

illumination.

Insert Figure 2 about here.
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A test surface on the far wall of the room is located so that it can be

illuminated by a projection colorimeter.  The illumination from the colorimeter

consists of a mixture of red, green, and blue primaries.  This illumination is

focused and aligned so that it is spatially coincident with the test surface: it is not

explicitly visible to the observer.  The overall light reflected to the observer from

the test surface thus consists of two components.  The first is the normal

reflection of the ambient illumination, while the second is generated by the

colorimeter.  Varying the intensity of the colorimeter primaries has the

perceptual effect of changing the color appearance of the test surface.

Essentially, we have taken the stimulus configuration exploited by Gelb (Gelb,

1950; see also Koffka, 1935; Katz, 1935) and brought it under computer control

(see also Valberg and Lange-Malecki, 1990; Uchikawa, Uchikawa and

Boynton, 1989; Kuriki and Uchikawa, 1996; Kuriki and Uchikawa, 1998).

As noted above, asymmetric color matching provides a convenient and

natural experimental method for linking computational theory and human

performance.  This procedure is particularly well-suited to studying color

constancy when there is a spatial change in the illumination (simultaneous

color constancy) so that the matches can be made between two surfaces that

are viewed at the same time (e.g. Arend and Reeves, 1986; Brainard, Brunt and

Speigle, 1997).  It is also possible to use asymmetric matching to study color

constancy for the situation of interest here, uniformly illuminated scenes where

the illuminant varies from one time to another (successive color constancy;

Brainard and Wandell, 1992; Brainard and Wandell, 1991; Bauml, 1995; Jin

and Shevell, 1996).  In this case, however, the matches typically involve a

memory component and are more difficult for observers.

A simpler experimental task is to measure the achromatic locus by having

observers adjust the chromaticity of a surface (or image region) until it appears
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achromatic (Helson and Michels, 1948; Werner and Walraven, 1982; Fairchild

and Lennie, 1992; Arend, 1993; Bauml, 1994; Chichilnisky and Wandell, 1996;

Maloney and Yang, 2001).  This task is performed easily and reliably by even

the most naive of observers. A direct comparison of asymmetric matching and

achromatic adjustment in a simultaneous color constancy experiment indicates

that the two tasks tap the performance of the same visual mechanisms (Speigle

and Brainard, 1999).

We measured how the achromatic locus depends on changes in

illumination.  Figure 3 shows typical results.  Each of the open circles shows the

chromaticity of an experimental illuminant.  Each of the corresponding closed

circles shows the chromaticity of the achromatic locus, measured for one

observer, under the corresponding illuminant.  The achromatic loci were

determined by averaging loci determined in separate sessions.  The x and y

standard errors of measurement for each locus are smaller than the plotted

points. 1

Insert Figure 3 about here.

The achromatic loci plotted are the chromaticities of the light reflected to the

eye that appeared achromatic (i.e. the chromaticities of the proximal stimulus).

To interpret the data in terms of color constancy, consider the chromaticity of the

light reflected from a surface that appears white under typical daylight.  Such a

surface has a reflectance spectrum that is nearly constant across wavelength

and thus the light reflected from it always has a chromaticity close to that of the

illuminant.  Figure 4 plots the chromaticity of the light reflected from a Munsell N

9.5/ surface under two illuminants.  This surface appears achromatic when seen
                                                
1  We verified that for our conditions the chromaticity of observers' achromatic adjustments does
not depend on luminance (Brainard, 1998).  This invariance does not hold in general (Helson and
Michels, 1948; Werner and Walraven, 1982; Chichilnisky and Wandell, 1996; see also Mausfeld
and Niederee, 1993; Mausfeld, 1998; Delahunt and Brainard, 2000) but is obeyed for
decrements seen against uniform surrounds (Chichilnisky and Wandell, 1996).
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under the standard viewing conditions for which the Munsell system is defined,

and for a color constant visual system it will continue to appear achromatic

under other viewing conditions.  Thus for a color constant visual system, the

chromaticity of the achromatic locus should coincide with the chromaticity of the

light reflected from this surface.  We conclude that color constancy is indicated

when the chromaticity of the achromatic loci lies near that of the illuminants (see

Figure 4).  This pattern is roughly what is seen in the data shown in Figure 3.

Insert Figure 4 about here.

It is possible to go from the data shown in Figure 3 to a constancy index.

The calculations are described in detail elsewhere (Brainard, 1998).  The index

takes on a value of 0 for the case when the achromatic loci are unaffected by

the illuminant (no constancy) and 1 when the achromatic loci track the

illuminant perfectly (complete constancy).  For intermediate cases, the index

may be thought of as describing the extent to which the achromatic loci track the

illuminant change.  The value of the index for the data shown in Figure 3 is 0.80,

and the mean value across a wide range of conditions (different objects in the

room, different illuminant changes) was 0.82 (Brainard, 1998).  Interestingly, this

is more constancy than is typically seen in studies conducted with monitor

displays. (Comparable indices are generally in the range 0.50-0.60, see

Brainard and Wandell, 1991; Brainard, Wandell and Chichilnisky, 1993;

Fairchild and Lennie, 1992).  The relatively high constancy index shown by

observers in our experiments is consistent with everyday experience: object

colors do not change much with changes in illuminant.  We believe that

laboratory experiments employing the sort of nearly natural stimuli described

above assess constancy as it operates in the real world.
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Testing computational models

The experiment described above quantifies color constancy across

changes of illumination.  It does not, however, tell us much about how the visual

system achieves the measured constancy.  In the experiment, the surfaces that

make up the scene remain constant as the illuminant is varied.  Such a design,

almost ubiquitous in studies of color constancy, eliminates from the stimulus

ensemble the illuminant-surface ambiguity that makes constancy a difficult

computational task.  Indeed, most computational theories can predict good

constancy under circumstances where the same collection of surfaces is viewed

under an unknown illuminant.  To test these theories it is necessary to conduct

experiments where both the surfaces in the scene and the illuminants are

varied.

To do so, we (Kraft and Brainard, 1999) had observers look into a small

(approximately 3 ft. on a side) chamber in which the spectrum of the illuminant

and the spectral reflectance of all visible surfaces could be independently

controlled.  Plate 2 shows images of the chamber in two different configurations.

Between the two, some of the objects in the chamber were changed, so that the

mean surface reflectance (s) in the scene is quite different in the two cases.  In

addition, the illumination in the two chambers is also different.  The combined

effect of the surface and illuminant manipulations is to make the spatial mean of

the two images (r) identical.  As with the experiments in the full room, the

appearance of a test patch in the chamber could be adjusted through the use of

the projection colorimeter.  The observers' task was again to adjust the

chromaticity of the test patch until it appeared achromatic.

The prediction of Buchsbaum’s algorithm for our experimental situation is

straightforward.  Given that the spatial average of the two images is the same,

the match-prediction hypothesis says that when two test patches seen in the
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respective images match in appearance, the light reflected to the eye should be

the same.  Achromatic adjustments do not establish complete perceptual

matches.  But it is plausible that each point on the achromatic locus measured

in one image matches some point on the achromatic locus measured in the

other image.  Given that we find that the chromaticity of light that appears

achromatic is independent of test luminance (see footnote 1), we arrive at the

prediction that the achromatic locus should have the same chromaticity when

measured in the two images.

Figure 5 plots the achromatic loci measured for one observer in this

experiment.  The achromatic loci are significantly different from each other, as

they were for three other observers (keep in mind that the standard errors for the

achromatic loci are smaller than the plotted points; see Kraft and Brainard,

1999).  From this fact, we can conclude directly that the spatial average of the

image is not the only statistic governing color appearance.  This in turn says that

Buchsbaum’s algorithm cannot completely describe human performance.

Insert Figure 5 about here.

The constancy index for the data shown in Figure 5 is 0.29.  The mean

index for four observers in the same experiment was 0.39.  These indices are

considerably lower than the value of 0.82 found for the experiments conducted

in the full room. The reduction is not due to the fact that observers were looking

into a chamber rather than sitting in an entire room: control experiments with the

chamber, where only the illuminant was varied, yielded constancy indices of

about 0.83.

DISCUSSION

In this chapter we have emphasized the link between computational

theories of color constancy and human performance.  In doing so, we have
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implicitly endorsed what Maloney refers to as the illumination estimation

hypothesis  (Maloney and Yang, 2001).  This is the idea, central to the

motivation here, that the visual system estimates the illuminant and that the

estimate is used to govern the perception of surface color (see also Mausfeld,

1998; Gilchrist et al., 1999; Speigle and Brainard, 1996; Brainard, Brunt and

Speigle, 1997).  The work reviewed here does not directly test the illuminant

estimation hypothesis, since observers do not make any judgments of

perceived illumination.  Recent work (Rutherford, 2000) suggests that the

illuminant estimation hypothesis is at best an approximation (see also Beck,

1959; Beck, 1961; Oyama, 1968; Kozaki and Noguchi, 1976; Noguchi and

Kozaki, 1985; Logvinenko and Menshikova, 1994).  Even if human surface color

appearance does not depend on an explicit illuminant estimate, we need not

refrain from using computational theory to develop and test models of what

image statistics influence the perception of surface color.  Indeed,  the models

we have elaborated are designed to make predictions about asymmetric

surface color matches (or closely related measures of appearance).  In this

sense, they are agnostic about whether the visual system computes an estimate

of illuminant or whether such an estimate plays a governing role in surface color

perception.

Our experimental logic can be used to show that a particular theory does

not provide a complete description of human performance.  In the case of

Buchsbaum’s algorithm, we learn that something other than the spatial average

of the cone responses in the image contributes to how the visual system

processes color information.2  The experiments do not, however, rule out a role

                                                
2  We should note that theories that postulate that the spatial average is the statistic that sets the
visual system’s effective estimate of the illuminant vary in terms of exactly how the average is
computed.   In our experiment, we matched the spatial average taken over image pixels, equally
weighted.  One can consider variants that weight distinct  image regions identically (e.g. Gershon
and Jepson, 1989), that take a spatially weighted average for each local image region (e.g. Land,
1986; see Brainard and Wandell, 1986), and that use the geometric rather than the arithmatic
average of the LMS responses (again Land, 1986; Brainard and Wandell, 1986).   Strictly
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for the spatial average.  Indeed, the fact that the constancy index is greatly

reduced when the spatial average is held constant suggests that this statistic

may play an important role in color perception.  A more definitive statement is

not possible based on our experiments, since by silencing the spatial average

we also affected other image statistics.  Yang and Maloney (Yang, 1999;

Maloney and Yang, 2001) have recently taken an empirical approach

complementary to ours, where they make small perturbations to one image

statistic while holding others constant.  Experiments of this sort can be used to

establish that particular statistics are used by the visual system.

A crucial feature of our experimental design is that we manipulate both the

illuminant and surfaces in the scene.  Without doing so, we could not match the

spatial average in the image while at the same time changing the illuminant.

This is a point of wide applicability.  Most computational theories derive their

estimate of the illuminant from specific scene statistics.  To test whether a

particular theory provides a complete description of human performance, we

can proceed by silencing the statistics used by that algorithm.  To do so in a

non-trivial manner, it is necessary to vary both the surfaces in the scene and the

illuminant.  To date, only a few other experimentalists have explored conditions

where both the surfaces and illuminants varied (McCann, 1994; Gilchrist and

Jacobsen, 1984; Kuriki and Uchikawa, 1998; see also Gilchrist, 1988).  It is our

opinion that further experiments where only the illuminant is varied are unlikely

to advance our knowledge of constancy much beyond its current state.  What is

needed is more experiments where the essential ambiguity between surfaces

and illuminants is restored to the experimental situation.

                                                                                                                                                
speaking, additional  experiments would be needed to rule out all of these variants for the class of
rich stimulus configurations we used.   There are, however, a growing number of results for
simpler laboratory images that make it difficult to adhere to any of these variants (Jenness and
Shevell, 1995; Singer and D'Zmura, 1994; Brown and MacLeod, 1997).
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In addition to conducting the experiment described above, where the spatial

average of the image was held constant across a change of illuminant, we have

measured achromatic loci in a variety of other images where surfaces in the

scene were varied across an illuminant change.  We will not review the

particulars of these manipulations here; most are described in Kraft and

Brainard (1999).  Across the conditions we studied, constancy indices (mean

across observers) varied considerably, ranging from 0.06 to 0.83.  The lowest

indices corresponded to spatially simple scenes where the surfaces were

changed to reduce information about the illuminant change.  The highest

indices were obtained when the surfaces in the scene were held constant

across an illuminant change.  The variation of constancy index with

experimental conditions emphasizes the fact that how well the visual system

adjusts to a change of illuminant depends on the stimulus ensemble: when little

information is available about the illuminant change the visual system is not

very color constant.

We find it encouraging that we have found stimulus manipulations that

cause the constancy indices to vary widely.  This indicates that we have brought

into the laboratory a set of factors that operate in rich images and that have a

substantial impact on human performance.  Identifying these factors more

precisely and bringing them under parametric control should allow more

systematic investigation of how color appearance is governed in complex

natural scenes.

Although our stimuli consisted of real illuminated three-dimensional objects,

we did not manipulate the spatial structure of the scenes.  The spatial structure

(either actual or perceived) of a scene can affect color appearance even when

the color statistics of the image are held fixed (Gilchrist, 1977; Gilchrist, 1980;

Knill and Kersten, 1991; Bloj, Kersten and Hurlbert, 1999).  Such effects are not
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captured by the experiments and models described here.  It is possible that for

our stimulus configurations, the visual system takes advantages of cues such as

specular highlights (Lee, 1986; D'Zmura and Lennie, 1986; Tominaga and

Wandell, 1989; see Yang, 1999; Maloney and Yang, 2001) and mutual

illumination (Funt, Drew and Ho, 1991; Funt and Drew, 1993; see Bloj, Kersten

and Hurlbert, 1999).  Whether this is the case or whether for our scenes the

color statistics alone provide most of the information used by the visual system

is an interesting and open question.

Another simplified aspect of our scenes is that the illumination was close to

spatially uniform.  Thus the task of segmenting the image according to different

illuminants has a particularly simple solution for our images.  How such

segmentation operates in images with multiple illuminants (simultaneous

constancy) remains a central unsolved problem that is not addressed by our

work.  Recent theories (Gilchrist et al., 1999; Adelson, 1999) have identified a

number of heuristics that might guide the segmentation process.  These

theories also suggest that once the image has been segmented into separate

regions, visual processing within regions is guided by the color statistics or

some summary of them.  Our work focuses on exactly how the image statistics

are used within uniformly illuminated regions.  Within the context of these recent

theories, our work is complementary to explorations of how the segmentation

processes operate.

It may be possible to quantify the relation between human performance and

the information about the illuminant change that is actually available in a pair of

images.  Up to this point, we have considered computational theories as

potential models for human performance.  But computational models can also

be used to provide a benchmark against which to compare human

performance.  This sort of analysis has been very successful in understanding
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data obtained from experiments that measure performance on objective

psychophysical tasks such as detection and discrimination (e.g. Green and

Swets, 1966; Geisler, 1989).  In such applications, one predicts the

performance of an ideal observer that optimally uses all of the information in the

stimulus to perform some task.  An ideal observer benchmark provides a

principled method for evaluating how efficiently a real observer performs a

particular task and thus to identify sites of information loss in visual processing.

Brainard and Freeman (1997) used Bayesian decision theory to develop an

ideal observer for color constancy in the Mondrian world.  Their work assumes

that in any scene, the surface and illuminant spectra are drawn at random from

a population whose distribution is known.  When the prior assumptions are met,

the algorithm returns an estimate of the illuminant that is optimal in the sense

that it minimizes the expected illuminant estimation error.3

The Brainard and Freeman algorithm may be applied to each image for

which Kraft and Brainard (1999) measured achromatic loci.  We can compute a

constancy index for the algorithm by treating the chromaticity of is illuminant

estimates in the same way that we treat the achromatic loci measured for

human observers.   Figure 6 shows the constancy indices obtained for human

observers plotted against the constancy indices obtained for the Bayesian

algorithm.  What is apparent in the plot is that there is a strong correlation

between the human and Bayesian indices.  If we take the performance of the

Bayesian algorithm as a measure of how much information is available for an

ideal observer to estimate the illuminant, we see that the variation in human

performance across the conditions is well-explained by information differences

between the various conditions.  The slope of the regression line between the

human and Bayes indices is 0.77.  This could be taken as a measure of the

                                                
3  See Brainard and Freeman (1997) for a detailed description of exactly what error is minimized.
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degree of human constancy, relative to ideal performance, across the whole set

of image manipulations.

Insert Figure 6 about here.

We do not wish to claim that the Brainard and Freeman (1997) algorithm

provides a good model of human performance, even for stimulus configurations

where the color statistics alone drive the visual system’s estimate of the

illuminant.  A strong test of the particular algorithm requires that we apply the

same logic as we developed earlier in the chapter -- find two images for which

the algorithm predicts the same illuminant estimate and then measure color

appearance for these two images.  Doing so will require development of more

sophisticated stimulus control techniques than we currently have at our

disposal.  The algorithm does, however, measure the information available from

the color statistics about the illumination change across a pair of images.  It is

therefore intriguing that the algorithm is able to make accurate predictions of

how human performance varies across a wide range of experimental

conditions.
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Figure 1.  Effect of changing the illuminant on light reflected to the

eye.  The light incident on a surface is characterized by its spectral power

distribution E(λ).  A small surface element reflects a fraction of the incident

illuminant to the eye.  The surface reflectance function S(λ) specifies this

fraction as a function of wavelength.  The spectrum of the light reaching the eye

is called the color signal and is given by C(λ) = E(λ)S(λ).  Information about

C(λ) is encoded by three classes of cone photoreceptors, the L-, M-, and S-

cones.  Note that this is a simplified imaging model.  In general, the function

S(λ) depends on the geometry of the observer, illuminant, and object.
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Figure 2.  Room apparatus.  Schematic of the experimental room.   The

experimental room was approximately 12’ by 9’ in dimension.  Four triads of

computer controlled lights provided the ambient illumination.  A projection

colorimeter allowed adjustment of the color appearance of a test patch located

on the far wall of the room.  Adopted from Figure 1 of Brainard (1998).
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Figure 3.  Basic achromatic results.  The figure shows the CIE 1931

chromaticities of the achromatic loci (solid circles) measured under two

experimental illuminants (chromaticity shown by open circles) for one observer.

The between session standard error of the mean is smaller than the plotted

points.  The maximum within session standard deviation of the individual

achromatic settings is indicated by the crosses at the upper left of the figure.

Adopted from Figure 3 of Brainard (1998).
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Figure 4.  Data expected for a color constant visual system.  The

figure plots the chromaticity of the light reflected from a Munsell N 9.5/ surface

(solid circles) under two illuminants.  The chromaticities of the illuminants are

indicated by the open circles.
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Figure 5.  Achromatic settings with spatial average equated.  The

format of the figure is the same as for Figure 3.  Here the achromatic settings

were made in the context of two images where the illuminant differed (open

circles) but the spatial average of the image was held constant. The between

session standard error of the mean is smaller than the plotted points.  Data are

replotted from Figure 2 of Kraft and Brainard (1999).
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Figure 6.  Comparison of human performance with Bayesian

algorithm.  The figure plots the constancy indices obtained for human

observers against constancy indices obtained for the Bayesian algorithm of

Brainard and Freeman (1997).  The algorithm was run using points selected at

random from calibrated LMS images of the stimulus.  The image acquisition

procedure is described in the caption for Plate 2 of this chapter.  The prior

distribution for illuminants was constructed to match the range of illuminants that

our apparatus could produce.  The prior distribution of surfaces was obtained by

analyzing a measurements of Munsell papers, as described in Brainard and

Freeman (1997).  The small negative constancy indices obtained in some cases

occur because the illuminant estimate shifts slightly in a direction opposite to

the actual illuminant change.
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Plate 1.  Renderings of two surfaces under two illuminants.  The top

row shows the same surface rendered under two different illuminants.  Each

rendering was obtained by using an illuminant spectral power distribution and

surface reflectance function to compute the spectrum of the color signal.  From

this, the Smith-Pokorny estimates (Smith and Pokorny, 1975; DeMarco,

Pokorny and Smith, 1992) of the L-, M-, and S-cone spectral sensitivities were

used to obtain the quantal absorption rates of each cone class in response to

the color signal.  These in turn were used together with typical red, green, and

blue phosphor emission spectra and monitor gamma curves to compute (cont.)
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 (Plate 1 cont.) RGB coordinates for the rendering.  The RGB coordinates were

chosen using standard methods (e.g. Brainard, 1995) so that the light they

cause to be emitted from the monitor has the same effect on the cones as the

color signal being rendered.  The RGB coordinates were used to produce the

plate by methods outside of the authors’ control.  The spectral plots show the

surface reflectance functions and illuminant spectral power distributions used

for this example.
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Plate 2.  Pictures of experimental chamber when spatial average

has been equated.  This plate shows pictures of the experimental chamber

used by Kraft and Brainard (1999).  Across the two images, both the illuminant

and the surfaces in the scene have been changed.  The two changes have a

reciprocal effect, so that the spatial average of the L-, M-, and S-cone quantal

absorption rates is the same in both images.  The images shown are rendered

versions of hyperspectral images taken of the stimuli.  The hyperspectral

imaging system (Longère and Brainard, 2001) provided 31 narrowband

(approx. 10 nm bandwidth at 10 nm spacing between 400 and 700 nm) images

of the scene.  The hyperspectral images were also used to determine the spatial

average of the cone quantal absorption rates.  Plate adopted from Figure 1 of

Kraft and Brainard (1999).
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