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Abstract 

Does the visual system allocate discriminative ability to different regions in 

colour space in a way that optimizes discrimination among natural colours? If so, 

discrimination should satisfy a “cube root rule”: in an optimized system differential 

sensitivity will be greatest for the most commonly encountered conditions, dropping to 

half its maximum under conditions of relative frequency 1/8. Quantitatively, this 

principle is only very roughly consistent with psychophysical data, but it does account for 

some of the salient findings, such as the relative sensitivity for different directions in 

colour space; the fit between theory and psychophysical observation is improved by 

considering the stimulus to be the local contrast between test field and background, rather 

than absolute luminance and chromatic values of individual pixels. Comparison with 

physiological data shows less satisfactory agreement: M cells appear to be too nonlinear, 

and P cells too linear, for optimal metric representations of luminance and colour 

respectively. The good colour discrimination of some strongly anomalous trichromats 

may result from an optimization, during development, of postreceptoral nonlinearity to 

match the limited range of inputs delivered by the anomalous photoreceptors.    

For natural colours under natural illuminants, the cone excitations for all surfaces 

in an image are scaled by approximately the same factor with a change of illumination. 

This allows the effect of varying illumination to be simply corrected by reciprocal 

adjustments of sensitivity in the different cone types. The resulting representation is 

illumination-invariant, but also fails to preserve information about the overall chromatic 
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cast of a scene. Yet experimentally, colouration of the image is perceptually attributed in 

part to the illuminant and in part to the viewed surfaces, resulting in “underconstancy”. 

When the statistical variation among natural illuminants and scenes is considered, 

underconstancy can be viewed not as a failure of constancy, but as a best guess about 

illuminant colour appropriately based on knowledge of relevant environmental statistics.  

Natural images do generate small deviations from the scaling principle. These can 

provide useful cues to the illuminant: statistics (other than the mean) of the distribution of 

an image’s elements in cone excitation space can in principle resolve the ambiguity 

inherent in the mean alone.  Experiment suggests that vision does exploit these cues.and 

gives them statistically justifiable weight.  

1. Introduction 

This year in Cambridge we remember Thomas Young (Mollon, this volume), but 

in this particular college, Peterhouse, we also remember James Clerk Maxwell, who so 

admirably filled out Thomas Young’s sketch of the trichromatic theory while still an 

undergraduate here and at Trinity (Sherman, 1981).  I think of Maxwell as a kind of 

prototype for all of us, because he combined a nice appreciation for the phenomena of 

colour with a penchant for quantitative analysis and mechanistic modeling. Although, as 

Goethe complained, all theory is gray, treatments of colour vision ever since Maxwell’s 

time have tended to involve quantitative models, and the present one is no exception. My 

discussion also typifies a much more recent theoretical trend: I will attempt to relate the 

processes of colour vision to the characteristics of the natural environment. The reference 

to natural scene statistics in the main connection between the two parts of the chapter—

the first (sections 2 to 6) concerned with colour discrimination, and the second (section 7) 
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with colour appearance and its transformation or constancy under changes of 

illumination. Also central to both discussions is the indispensable and now familiar 

intellectual device that we owe to Maxwell: cone excitation space, the alpha and omega 

of colour spaces, where 3 Cartesian co-ordinates specify the colour stimulus through the 

rates of isomerization of the three visual pigments of normal trichromatic colour vision.  

  

2. Discrimination and the distribution of natural colours 

Following von der Twer and MacLeod (2001), colour discrimination is here 

considered as a slicing of cone excitation space into distinguishable cells, and the 

questions considered are: What is the distribution of naturally occurring stimuli in cone 

excitation space? Is the slicing pattern that is revealed in psychophysical measures of 

colour discrimination well adapted for representing colours from that distribution? And 

how is the slicing pattern related to the neural representation of colour within the visual 

system? 

The key idea to be developed is that it is advantageous to slice cone excitation 

space more finely in regions where natural colour stimuli are most densely concentrated. 

Imagine that successive, reliably different, levels of each neural signal define bins or 

slices into which our visual system can reliably divide colour stimuli (for instance in 

Figure 1 at left, separate signals originating from the L and M cones slice the shown 

plane of the place horizontally and vertically with 10 distinguishable levels each). The 

total number of these slices is fixed for a given signal by the range of output signal 

strength, going from zero to some maximum firing rate, and also varies reciprocally with 

the degree of intrinsic randomness or noise present in the neural signal. It has been clear 
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since the time of Fechner and Helmholtz that the visual system slices cone excitation 

space in a distinctly non-uniform manner. In some respects at least the non-uniformity 

takes the form of finer slicing where natural stimuli are most frequent. For example: the 

first characteristic of the slicing pattern to be recognized (Helmholtz, 1896) was that 

equal percentage changes in the linear cone excitations are roughly equally detectable, as 

if the excitation differences seen by each cone are divided by the mean excitation, a 

scenario supported by psychophysical (He & MacLeod, 1997, MacLeod, Williams & 

Makous, 1992) and physiological evidence (Dacey, Lee, Stafford, Pokorny & Smith, 

1996) . Since equal percentage changes correspond to equal intervals in the logarithm, a 

log-cone-excitation space in which each cone excitation is logarithmically compressed is 

more uniformly sliced than the linear one. The approximately logarithmic slicing pattern 

is efficient for representing natural surface colours, since natural stimuli are more 

symmetrically distributed in the logarithmic cone excitation space (Ruderman, Cronin & 

Chiao, 1998), without the concentration of dark colours near the origin seen in the linear 

space of Figure 1.  

But two main features of the distribution of natural colours are not well dealt with 

by independent compression of the cone excitations. First, the stimulus distribution is 

centrally peaked: near-grays of moderate reflectance are relatively common, and the 

margins of cone excitation space, even in its logarithmic form, are only sparsely 

populated. Accordingly, fine discrimination is less important in the margins of colour 

space than in the centre, near white, where natural colour stimuli are most densely 

packed. Much psychophysical evidence on colour discrimination has indeed indicated a 

slicing pattern with best discrimination near white (or more precisely, near the stimulus to 
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which the visual system is adapted) and a progressive deterioration as the saturation of 

the reference stimulus increases (Friele, 1961, LeGrand, 1949, Mollon, 1982, Pugh & 

Mollon, 1979). Superior discrimination for the naturally abundant near-neutral colours 

cannot be explained by independent compression of the three cone excitations, but 

requires a comparable compressive nonlinearity in the neural code at the colour-opponent 

level, where it is the differences between cone excitations that are represented (Friele, 

1961). The requirement for finer slicing near white thus yields a rationale for colour 

opponent encoding.  

Second, the distribution of natural colours in cone excitation space is highly 

anisotropic, with much less dispersion in the red-green direction (the negative diagonal in 

Figure 1, right) than in the luminance direction (the positive diagonal) or in the blue-

yellow direction. Correspondingly, colour discrimination thresholds in the red-green 

direction, expressed in terms of cone contrast, are an order of magnitude lower than they 

are in the achromatic or luminance direction  (Chaparro, Stromeyer, Huang, Kronauer & 

Eskew, 1993), implying finer “slicing” of log-cone-excitation space in that direction than 

in the luminance direction. This anisotropic slicing pattern also calls for colour-opponent 

signals. In the nonlinear analysis to be developed here, it is the reduced dispersion of 

natural inputs in the red-green direction that makes such a slicing pattern feasible and 

advantageous. Indeed, according to von der Twer and MacLeod (2001), only a nonlinear 

analysis can properly justify this obviously appropriate choice of slicing directions, 

although the principle of “decorrelation” within a linear framework dictates a similar 

choice (Buchsbaum & Gottschalk, 1983, Fukurotani, 1982, Zaidi, 1997). 
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Von der Twer and I considered quantitatively how the visual system’s distribution 

of discriminative capacity over cone excitation space ought, in principle, to depend on the 

distribution of natural colour stimuli as represented in two data sets (Brown, 1994, 

Ruderman et al., 1998). For 574 haphazard samples of natural colours measured in San 

Diego by Richard O. Brown, the correlation between L and M cone excitation is 0.985. 

These samples were not selected in such a way as to be representative in any sense, and 

they may have included a disproportionate number of highly chromatic surfaces since 

these would more readily have caught the investigator’s eye. Ruderman, Cronin and 

Chiao (1998) obtained spectral reflectance estimates, pixel by 3 min arc pixel,  for 12 

entire views of natural environments. For this data set comprising nearly 200,000 pixels, 

the correlation between L and M cone excitation is even higher at 0.9983. In that sense, 

the L and M cones measure almost the same thing—luminance—when used in natural 

environments. Surface luminance is given simply by the summed excitations of L and M 

cones, which we denote here simply by L and M (Eisner & MacLeod, 1980, Lennie, 

Pokorny & Smith, 1993). The standard deviation of log10(L+M) in Brown’s data set is 

0.46, which corresponds to a factor of three in luminance; for Ruderman et al.’s data the 

value is 0.24, a little less than a factor of two. A convenient measure of the red/green 

dimension of colour is the L cone excitation per unit luminance, r = L/(L+M ). As the 

high LM correlation implies, the standard deviation of r is strikingly smaller than that for 

luminance: only 7.5%, or 0.03 in the decimal logarithm for Brown’s data, and only 1% 

for the entire scenes of Ruderman et al. For the remaining chromatic axis, we adopt the 

luminance-normalized S cone excitation, b = S/(L+M), which is low for yellows and very 

high for violets. The standard deviation of b is an order of magnitude greater than for r, 
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though still lower than the one for luminance: 0.39 in log10(b) or a factor of about 2.5 in 

b for Brown’s data, and 0.114 in log10(b)  or 30% in b for the data of Ruderman et al 

(crosses in Figure 2 show the histogram for log10(b)).  In both these data sets, the 

average of the natural stimuli is near to, but slightly yellower than, the equal energy 

white, which plots at a horizontal coordinate of zero in the Figure. 

We can now ask: what arrangement of slice thicknesses could provide the most 

precise representation, averaged over all cases, of natural colours conforming to the given 

distribution? This criterion allows determination of an optimum nonlinear code, subject 

to the constraint of a limited output range. As will be seen in the next section, the optimal 

code with a single neuron per stimulus dimension is a sigmoid. For two neurons per 

dimension, it is a split range code employing rectifying opponent cells (Section 4). In 

Section 5 this theoretically optimal behaviour is compared with psychophysical results on 

the one hand and with physiological data on nonlinearity of the postreceptoral neural 

code on the other.  

 

3. Optimal nonlinearity: the pleistochrome 

The optic nerve constitutes an informational bottleneck for vision, where the 

number of nerve fibers is relatively limited, and the number of nerve impulses is much 

less than the number of absorbed photons at daylight light levels (Barlow, 1965). Hence 

relatively large errors are introduced by random fluctuations in the optic nerve impulse 

counts (Bialek & Rieke, 1992, Lee, Wehrhahn, Westheimer & Kremers, 1993). So 

initially we assume, for simplicity, that variability originating at the retinal output 

predominates over sources of error at earlier stages. 
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When discrimination is limited by noise introduced into an output signal, good 

discrimination around any input value can be achieved by making the gradient of the 

input-output function at the relevant point as steep as necessary. But the limited total 

available range in firing rate means that an increase in gradient at one point has to be paid 

for by a decrease at other points within the input range, and hence by reduced 

discrimination at those points. By suitable choice of a nonlinear response function, 

relative discriminative precision can be distributed in any desired way over the range of 

input values. But which choice is best? For example, what input-output function gives the 

smallest RMS error in the estimated input, averaged over all naturally occurring cases? 

Clearly it would be inefficient to make the code linear (with constant gradient and 

constant discrimination) over an input range greater than what is naturally encountered, 

as in the straight line in Fig. 2, where the crosses represent the natural distribution of 

log10(b) from the data of Ruderman et al. This sacrifices discrimination among 

frequently occurring stimuli in order to preserve discrimination in ranges where it is 

never needed. Also inefficient is the opposite extreme, a response function that steps 

abruptly from minimum to maximum firing rate at the peak of the distribution of natural 

colours (step function, Fig. 2). This provides only categorical colour perception, with 

exquisite discrimination between bluish and yellowish colours, but no distinction among 

blues or among yellows. The best choice will be an intermediate one (circles, Fig. 2): a 

gently curving sigmoid, which retains some discrimination in the tails while slicing 

colour space most finely at the peak. More specifically, the optimal response function has 

a gradient matched to the cube root of the probability density function of the input 
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distribution, and generates discrimination thresholds inversely proportional to that 

gradient.  

Denote the input by x  (which might be, for instance, some weighted sum of cone 

excitations), and the noisy output (e.g. a retinal ganglion cell firing rate) by a random 

variable y*, with mean y = g(x), a generally nonlinear function of x,  and with a standard 

deviation σ (y*) due to the addition of a random noise term, y* - y. With the simplifying 

assumption that g(x) can be treated as linear over the limited range of confusion, the input 

x* that would elicit y* in the absence of noise is 

 

  x* = g-1(y*) = x + (y*-y)/g’(y) 

 

Since the mean of (y*-y) is zero, the mean of x*  is simply the true input x, and the 

mean squared error for input x is the variance of x* , which we denote σ2(x*). This is 

proportional to the output variance σ2(y*), which we initially assume to be fixed and 

independent of y: 

 

    2

2
2

(x))g(
(y*)

 = (x*))(
′

=
σ

σxMSE     (1) 

   

The constant of proportionality is the inverse square of g’(x), the gradient of the 

input-output function y=g(x) at x : where g(x) is steep, a smaller range of inputs suffices 

to span the range of the noise that is added at the output. 
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Denote the environmental probability distribution of x (for all stimuli 

encountered, or of interest) by p(x). The mean squared error to be minimized is the 

average of σ2(x*) for all inputs, or its probability-weighted integral over x: 

 

  MSE = ∫p(x) σ2(x*) dx 

 

To see how this can be minimized, consider the effect of small variations in the 

response gradient or incremental gain g’(x) around its optimal value.  An increase in 

g’(x) at one value of x has to be paid for with an equal decrease at other values of x, and 

in the optimal condition the effects of such complementary changes must cancel, that is 

p(x)d(σ2(x*))/dg ’(x) must be independent of x. Thus 

 

  d(σ2(x*))/d(g ’(x)) = α/p(x)    (2) 

with a constant α. 

 

Since from (1) 

  d(σ2(x*))/d(g ’(x)) = -2(σ2(y*))/(g ’(x))3 

  

the optimal condition occurs when the gradient is matched to the cube root of the pdf: 

  

  g ’(x) = β p(x))1/3    (3)   
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 The scaling factor β absorbs the factor equal to the output variance. It serves only 

to define units of measurement for y and can be set to 1 if those units are not defined 

independently. Hence 

  

g(x) =  ∫ ∞−

x
β(p(u))1/3du   (4) 

 

 

Here the input quantity can be any function of the cone excitations (e.g. the log, in 

this example.) The optimum response gradient just hast to be matched to the cube root of 

the probability distribution of the input quantity for which error is to be minimized.  

Von der Twer and I refer to this optimal response function, illustrated by the 

circles in Figure 2, as the pleistochrome, from the Greek pleistos meaning ‘most’. As Fig. 

2 shows, the pleistochrome is roughly similar to the cumulative distribution of 

environmental stimulus values dictated by the principle of histogram equalization and 

suggested by Simon Laughlin, the first person to consider these issues quantitatively 

(Laughlin, 1983). With histogram equalization all of the “slices” are equally populated. 

But the pleistochrome is wider than the histogram-equalization sigmoid by a factor of 

about the square root of three, allowing much better discrimination in the margins of 

colour space.  

4. The benefit of split range coding 

Our discussion has not yet yielded any rationale for the familiar colour-opponent 

codes (Derrington, Krauskopf & Lennie, 1984, DeValois & DeValois, 1975). On the 

contrary, the sigmoidal nature of the pleistochrome is incompatible with a null response 
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to white.  But when more than one neuron is available to represent a single stimulus 

dimension, new opportunities for coding are introduced.  The non-opponent 

pleistochrome that optimizes encoding by a single neuron has an opponent counterpart 

when the encoding is done by a pair of neurons. Two rectifying neurons, one red-

excitatory and the other green-excitatory, and each with a purely compressive 

nonlinearity,  can represent opposite halves of the red-green stimulus continuum with 

positive firing rates, but with little or no response to greenish or to reddish stimuli 

respectively. Such a representation is almost equivalent to that produced by a single 

neuron with sigmoidal nonlinearity (Marr, 1974). The responses of two such neurons 

correspond to the two halves of the single-neuron pleistochrome sigmoid, but with the 

left half flipped up so that the response gradients for the neuron responding in the left half 

of the stimulus range are simply reversed. This, however, uses only the upper half the 

output range of each neuron. If the appropriate segment of the input range elicits the 

maximum possible response range from each neuron, the gradients of the response 

functions are doubled everywhere.  

By using two neurons in this way the visual system can therefore double the 

precision in its representation of the input in the presence of output noise. If, 

alternatively, the two neurons had each been endowed with the same sigmoidal 

nonlinearity that is optimal for single neurons, then averaging of their signals (on the 

generous assumption of independent noise) would have reduced average error by only the 

square root of two. Thus the net benefit of adopting the ‘split range’ code (as opposed to 

the alternative of similar neurons operating in parallel with optimal nonlinearity) is a 

square root of two reduction of average error. 
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Location of white. If the split-range colour opponent code is designed for optimal 

characterization of natural colours in the least-average-error sense, and if the null 

stimulus for the colour-opponent neurons is the subjectively achromatic white, typical 

natural colours should be nearly white. This is of course roughly correct, but the 

prediction is not fulfilled exactly. Typical natural colours, at least in the chosen 

environments, where vegetation tends to be predominant, are greenish and yellowish. 

There are a number of more or less plausible post hoc rationalizations for the somewhat 

unexpected placement of the white point (and of the optimum point for colour 

discrimination). First, although most natural surfaces are yellowish, the sky is bluish. If 

equilibrium hue loci are adaptively fixed by the average input, the blue of the sky might 

act as a massive low-r and high-b counterweight to shift the environmental mean 

substantially from the mean of surface colours. Second, the location of the white point 

could be a compromise between optimizing discrimination for the most frequent surface 

colours (which, if the images of Ruderman et al. are typical, would put it in the part of 

colour space we actually identify as yellow-green) and preserving some discrimination 

for saturated blue and red surfaces. Even if this choice is not optimal by the unweighted 

least-squared-error criterion, it could be appropriate if saturated colours (other than the 

greens) tend to have greater than average biological importance. Osorio and Bossomaier 

(1992) suggest that discrimination among the greens of vegetation is not important or 

even desirable, whereas discrimination of reddish fruits from vegetation is important. A 

null point, with optimal discrimination, near white might usefully promote those 

discriminations at the expense of the less important ones. Such considerations are the 
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focus of much recent discussion (Regan, Julliot, Simmen, Viénot, Charles-Dominique & 

Mollon, 2001) 

 

5. Comparison of the pleistochrome with psychophysical and 

electrophysiological data  

Testing the cube root rule. The proposal that visual nonlinearity is optimized for 

discrimination among natural colours in the presence of output noise leads to a simple 

prediction: the average error in visual discrimination or matching should be inversely 

proportional to g'(x) in equation (4), and hence to the cube root of the natural probability 

density function p(x). This prediction holds even for non-uniform output noise, provided 

that the nonlinearity g(x) is appropriately optimized in each case (von der Twer and 

MacLeod, 2001). 

 Psychophysical data for evaluating this prediction are available. For achromatic 

intensity differences between comparison and standard stimulus patches, set in a common 

grey background, comparison error is doubled for standards that create a contrast of about 

20% with the background. For isoluminant yellow-blue differences the cone contrast (for 

S cones in this case) at which error is doubled is again about 20%. But in the case of red-

green isoluminant stimuli a standard L cone contrast of only 2% is enough to double the 

mean comparison error (Figure 3; Leonova and MacLeod, in preparation).1   

                                                 

1 The implicit assumption here that contrasts along the three axes of color space are perceptually related by 

simple scaling factors is consistent with contrast matching results of Switkes and Crognale(1999). Switkes 

and Crognale, however, found greater relative sensitivity to achromatic contrast. Their parafoveal grating 

stimulus may have been high enough in spatial frequency to place the chromatic mechanisms at a 
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If the visual system adopts the encoding principle of the pleistochrome, we would 

therefore expect to find the probability density function p(r) for natural colours dropping 

to 1/8 of its peak value at r values that give a contrast of 2% with white, with half-heights 

at around 20% contrast for the other axes. This prediction is in one respect roughly 

upheld, since as we saw in Section 2, the distribution of environmental colours the ranges 

for luminance and for b are indeed wider than for r, by an order of magnitude or so. In 

that sense the operating ranges of the various relevant neurons are fairly well matched to 

the very diverse distributions of environmental inputs that they have to represent. 

Webster and Mollon (1997) likewise noted that the mean contrast of their images along 

each of these axes was very approximately a constant multiple of the visual contrast 

threshold.  In fact, however, the environmental distributions of b and (especially) of 

luminous reflectance are somewhat broader than would be expected for strict consistency 

with the pleistochrome principle (Table 1). Why should the operating range of the visual 

system be narrower than ‘optimal’ in this way? 

Importance of contrast. One answer appeals to visual adaptation. Since retinally 

stabilized images fade, vision is evidently sustained by the temporal transients that are 

generated when small eye movements scan spatial gradients in the image. It is therefore 

relevant to consider the distribution of the spatial differences in cone excitation in natural 

images. In the images of Ruderman et al, the differences in luminance, in b, and in r 

                                                                                                                                                 

disadvantage. The spatial frequency dependence of the relative sensitivities for difference directions in 

color space (Parraga et al., 1998) is indeed not fully consistent with the statistics of natural scenes, a fact 

that complicates the simple correspondence noted in this section and limits the generality of the cube root 

rule. 
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between adjacent 3 min arc pixels, have standard deviations of only 30%, 13% and 0.6% 

respectively.The pdfs drop to 1/8 (where optimal differential sensitivity is halved) at 

about twice these values. These distributions are naturally somewhat tighter than those 

for the absolute values, owing to correlated variation in the values across the scene. The 

visual system can therefore advantageously employ an adaptively roving null point for 

the colour-opponent code (Krauskopf & Gegenfurtner, 1992, Thornton & Pugh, 1983), if 

its objective is the precise representation of local contrast (from which a metric 

representation of local brightness and colour can then be resurrected, perhaps in the way 

discussed by Land and Marr (Land, 1959, Marr, 1974).  With a roving null point, the 

range of input values spanned by the neural response functions need only be wide enough 

to capture the relatively small deviations in the stimulus values from their time and space 

varying adapting levels—and the precision with which those values can be represented 

then becomes correspondingly greater.  Local-contrast pleistochromes—contrast-

response functions that lead to least error in the representation of pixel-wise spatial 

differences in the images of Ruderman et al.—are narrow enough to be fairly consistent 

with the cited psychophysical results in the case of the chromatic variables. (Table 1)  

This analysis implies, in agreement with observation (Leonova and MacLeod, in 

preparation; Smith, this volume) that the very sharp optimum in colour discrimination is 

observed only when test and reference field are embedded in a common uniform 

surround that sets the adaptation state.  

When light adaptation provides accurately reciprocal sensitivity adjustments in 

each cone (Dacey et al., 1996, He & MacLeod, 1997, MacLeod et al., 1992), 

postreceptoral signals become functions of contrast. In the classical bipartite field for 
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which the MacAdam ellipses (MacAdam, 1942) were measured, the contrast between the 

two halves of the field is nearly zero. Postreceptoral neurons sensitive to contrast then 

operate at a fixed point on their response function for all colours to which the observer is 

well adapted; the margins of colour space no longer need be disadvantaged. On this view, 

all the MacAdam ellipses are really the same ellipse, but measured with different cone 

sensitivities. As noted, LeGrand (1949) showed that this view is too simple: MacAdam’s 

discrimination thresholds do increase somewhat with increasing saturation of the 

reference colour. But that increase is far less precipitous than what is found with a 

common uniform surround for reference and test (Figure 3; Smith, this volume). In view 

of the effort that has been lavished on the refinement of colour difference formulas to 

account well for MacAdam’s data, it is important to remember that when test and 

reference fields are non-adjacent, the pattern of results is very different. Colour difference 

formulas for that situation have yet to be worked out.  

 

Discrepancies for luminance. For luminance, the contrast operating range implicit 

in the discrimination results is narrower by a factor of about three than the theoretically 

optimal pleistochrome.  A second limitation in our initial framework, also connected with 

the role of adaptation, may underlie this remaining discrepancy. We have taken for 

granted that the purpose of colour and lightness vision is to represent colours and 

lightnesses with the least possible error and allow these attributes of a surface to be 

estimated as precisely as possible.  But of course, differences in lightness and colour are 

also indispensable for the detection of spatial features (Boynton, 1980, Morgan, Adam & 

Mollon, 1992).  For spatial vision, local contrasts should be detected with the greatest 
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possible sensitivity wherever they are present in the image. For this purpose, an all-or-

none or categorical encoding scheme, with a step function nonlinearity at a small 

threshold offset from the adapting background stimulus is ideal (since the large, all-or-

none spatial contrast signal resists obliteration by fluctuations in the output), and the 

graded response of the pleistochrome is not needed. Visual nonlinearity more step-like 

than the pleistochrome could therefore reflect a compromise in design between the 

conflicting requirements of surface identification and characterization on the one hand, 

and of detection of spatial features on the other. This is supported by the 

electrophysiological data considered below. 

 

Comparison with physiological results. We next apply a Fechnerian construction 

(Fechner, 1860) to derive nonlinear opponent codes for lightness and colour from 

discrimination data such as those of Figure 3 and to compare the result with physiological 

data on the response functions of single neurons in the optic nerve. 

In Fig. 3, predictions for the two extreme cases that were introduced in Fig. 2 are 

illustrated for comparison with the data. A linear code predicts uniform precision of 

discrimination (horizontal dashed line). An all-or none response, that distinguishes 

sharply between reddish and greenish colours but makes no distinction among the colours 

of each category, permits standards of any redness to be distinguished only from greenish 

tests, and vice versa; hence the threshold ∆r = |r –r*|, where r* is the colour category 

boundary. In Fig. 3 the steep dashed V illustrates this prediction, assuming a category 

boundary at r* = 0.7 (the value for white). Neither of these extreme models describes the 

data well; the condition for discrimination is neither constant nor as abruptly standard-
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dependent as the step nonlinearity would require. Instead, the linear increase in threshold 

on each side of the white point suggests, by a straightforward extension of Fechner’s 

argument to the colour domain, a logarithmic compression of each of the two colour-

opponent neural signals that form the split range code. The linear variation of the 

discrimination threshold with r on each side of the null point r = .7 in Fig. 3, with an 

abscissa intercept at r0, leads to a response-intensity function of the form  

 

N = ln|(r - ro )|      (5) 

where ro has a value of about .714 for the ‘green’ response (applicable for r < .7) 

and .68 for the ‘red’ response (applicable for r > .7) . The value obtained by reflecting ro 

around the null point, r = 0.7 + (0.7 - ro),  is the value of r associated with a doubling of 

threshold, or a halving of differential sensitivity. This condition occurs at an L cone 

contrast of about 2% with respect to the null white stimulus in each case. 

By reversing the argument that led to Equ. (4), one can then ask: for what 

distribution of environmental inputs is the Weber Law discrimination function—and the 

logarithmic response nonlinearity of Equ. (5)—optimal? The answer is p(x) = pmax 

/(1+|(x/x0)|)3.  This function does fit tolerably well the central core of the distribution of 

local contrast in the images of Ruderman et al. Whether we accept Fechner's integration 

or not, the need to perceptually reconstruct values distributed in this way adds a new 

functional rationale for Weber's Law for contrast.  

The nonlinearity implied by the reviewed psychophysical data is quite severe. The 

gradient of the red-green response function, assumed in Equation (4) to be directly 

proportional to differential sensitivity, is halved at an L cone contrast of roughly 2%. No 
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physiological data suggest so severely compressed a response function for responses to 

chromatic stimuli: half-saturation L cone chromatic contrasts of around 10% appear to be 

more typical, for the red-green sensitive P cells of the parvo-cellular stream (Lee, 

Pokorny, Smith, Martin & Valberg, 1990). Thus although the psychophysically estimated 

visual operating range along the red-green axis is efficiently matched to the range of 

environmental inputs, the physiological one apparently is not. Elsewhere (MacLeod and 

von der Twer, in preparation) we consider reasons for this. These include the possibility 

that output noise inceases with mean firing rate (as in a Poisson process), which makes 

the optimum physiological nonlinearity a more gentle one. 

Along the achromatic axis of colour space, both the psychophysical operating 

range in cone contrast and the dispersion of the environmental inputs are (as noted above) 

at least tenfold greater than along the red/green one. The M cells of the magnocellular 

pathway are a plausible substrate for achromatic discrimination (Livingstone & Hubel, 

1987). These cells, however saturate at very low achromatic cone contrasts, with half-

saturation values of around 5% (Kaplan, 1986, Lee et al., 1990, Wachtler, Wehrhahn & 

Lee, 1996). The M cells thus deviate by an order of magnitude from the optimal 

behaviour embodied in the pleistochrome. They could not support the observed keen 

discrimination between test patches with relatively high achromatic contrast relative to 

their surrounds. 

It is therefore likely that the M cells are not responsible for representing the 

achromatic attributes of surfaces in a continuous fashion, but serve instead as all-or-none 

detectors of spatial contrast and of change over time. Thus, although responses of P cells 

to red/green contrast incorporate a degree of nonlinearity only slightly less pronounced 
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that that of the M cells for achromatic contrast, comparison with natural scene statistics 

actually suggests different functions for these two systems. The red/green nonlinearity of 

the P cells is roughly appropriate for a metric representation of their natural inputs, but 

the nonlinearity of the M cells is not. This is consistent with the common view that the 

luminance system (sometimes tentatively, though questionably, identified with the 

magnocellular pathway) is more concerned with form and with detection of spatial 

structure than are the chromatic ones (Boynton, Hayhoe & MacLeod, 1977, Gregory, 

1979, Livingstone & Hubel, 1987). The metric representation of the achromatic axis as 

well as the chromatic axes could be the job of the P cells (Allman & Zucker, 1990, 

Pokorny & Smith, 1997), which have an almost linear response to achromatic contrast. 

 

6. Is the nonlinearity optimized developmentally? Anomalous observers as 

a test case 

Leaving aside the discrepancies noted above, we have seen that the operating 

ranges of postreceptoral neurons, or the ones implicit in psychophysical discrimination 

performance, are very roughly appropriate to the range of inputs they receive from 

natural environments.  But is the appropriate form of the neural nonlinearity genetically 

determined (and specified via natural selection during evolution), or is it shaped during 

development? In anomalous trichromats, nature has provided a test case that may decide 

this point. Here our theoretical concerns finally make contact with the work of Guy 

Verriest, by providing a new perspective on deficiencies of trichromatic colour vision. 

Previous treatments of colour discrimination by anomalous observers have 

implicitly neglected output noise, supposing that colour discrimination thresholds will, 
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like the cone contrasts, vary inversely with the separation between the L and M pigment 

absorption curves. This expectation is not generally upheld: although there is some 

disagreement about the interpretation of the finding (Pokorny & Smith, 1977), 

discrimination and pigment spectra (assessed from colour matching measures) vary 

almost independently among anomalous observers (Hurvich, 1972, Pickford, 1958, 

Pokorny, Smith & Verriest, 1979, Verriest, 1960, Willis & Farnsworth, 1952), .  

Consideration of output noise can resolve this paradox. If discrimination is limited 

by noise added to the colour opponent signal, discrimination around any given point in 

colour space can be improved, in principle without limit, by increasing the gain of the 

stage relating the colour opponent signal to the receptor signals. The total number of just-

noticeable differences, or slices, along any chromatic continuum is then fixed by the 

output noise amplitude and output signal range, not by the photoreceptor inputs. With a 

plastic nonlinearity optimized to the range of photoreceptor excitations generated by the 

natural environment, the entire available range of output signals can be mapped onto the 

range of inputs made available by any particular trichromat’s photoreceptors. The range 

of signals might in this way “expand to fill the neural space available” (Regan & Mollon, 

1997). Discrimination thresholds for trichromats can therefore in principle be completely 

independent of the (non-zero) separation between the pigment sensitivities!2 

                                                 

2 Alternatively, if the nonlinearity is genetically fixed, or for any reason fails to be shaped appropriately by 

input during development, the impoverished cone contrasts provided by the anomalous observer’s 

photoreceptors will fail to span the full range of the colour opponent signal, and discrimination will then 

impaired just as if noise were added at the input (e.g. to the photoreceptor excitations themselves). In this 

case, the colour opponent signals of anomalous trichromats, being smaller than those of normal observers, 
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Thus the existence of strongly anomalous observers who violate the naively 

expected relation between pigment spectra and discrimination by showing near-normal 

colour discrimination at all chromatic contrasts can be explained by—and taken as 

circumstantial evidence for—both the importance of output noise, and plasticity of 

colour-opponent nonlinearity. I myself may be such a case. I am deuteranomalous, with a 

very deviant match point (Nagel log10(AQ) = 0.56). The implication that my anomalous 

M photoreceptor spectral sensitivity is close to my normal L sensitivity is supported by 

dichromat-like behaviour under selective adaptation or selective bleaching: these 

manipulations alter my relative sensitivity for red and green by less than 10 per cent, as 

opposed to the tenfold change possible in normals (Eisner & Macleod, 1981). 

Yet in the experiment of Figure 3, my thresholds were only about twice the shown 

values (which are typical of practiced normal observers). More significantly, this held 

approximately for all tested chromatic contrasts of test and reference relative to the white 

surround, with no clear trend toward improved performance at high contrast. This 

preliminary evidence suggests that my colour-opponent neurons were overloaded to 

about the same degree as those of normal observers by these coloured stimuli, just as 

expected if colour-opponent nonlinearity is shaped during development.   

 Similar theoretical possibilities exist for acquired deficiencies, if these have the 

effect of reducing chromatic signal strength in the retina before noise is added to the 

                                                                                                                                                 

will undergo less nonlinear compression, with the interesting consequence that the anomalous observer will 

have relatively good (conceivably even super-normal) discrimination in situations where the compared 

stimuli each have high chromatic contrast relative to their common background. Inferior sensitivity at low 

chromatic contrast will be accompanied by relatively good sensitivity at high chromatic contrast. 
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signal at the retinal output. But since plasticity is generally thought to decrease with age it 

is less likely that neural nonlinearity can be optimized in response to an acquired deficit.  

 Instead of long-term plasticity, one could alternatively invoke short-term 

adaptation (Webster and Mollon, 1997) and gamut compression/expansion by context 

(Brown and MacLeod, 1997) as the means for “tuning” the nonlinearity of colour-

deficient observers to suit their diet of impoverished chromatic contrast. On this view, 

acquired colour deficiencies and congenital ones should behave alike.  

 Plasticity of color appearance.  There is reason to believe that the null points of 

the color opponent code, as well as the operating range, may be plastic. First, normal 

observers and anomalous observers show close agreement when asked to identify the 

unique phenomenally pure spectral yellow or blue that they consider to be neither reddish 

nor greenish, an agreement possible only if individual variation in the cone spectral 

sensitivities is in some way compensated postreceptorally; moreover, the slight 

differences between normal and anomalous unique yellow settings are roughly consistent 

with the idea that some post-receptoral adaptation to the history of photoreceptor signals 

sets the opponent null appropriately in relation to the near-white average of 

environmental stimuli. (Pokorny & Smith, 1977). Second, among normal observers the 

variation in unique yellow has been found to be relatively small despite large variation in 

the relative contribution of L and M cones to spectral sensitivity (Brainard, Roorda, 

Yamauchi, Calderone, Metha, Neitz, Neitz, Williams & Jacobs, 2000, Pokorny & Smith, 

1977). Paul Wise and I have obtained further evidence on this point. Twenty-four normal 

male observers made flicker photometric matches and unique yellow settings using CRT 

stimuli. The mean decimal logarithm of the relative M cone weight derived from the 
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flicker photometric settings was 0.045 (where agreement with the standard luminosity 

curve would imply a zero value), but the values for different observers differed widely, 

with a true standard deviation of 0.35 (after deduction of experimental variance, assessed 

from variability in the settings of each observer across sessions). For unique yellow 

settings, however, the standard deviation among observers was only 0.023, sixteen-fold 

less (around a mean of 0.429). The yellow setting showed no clear correlation with the 

observer’s spectral sensitivity. The post-receptoral compensation hypothesis is consistent 

with such lack of correlation, but substantial correlations that it predicts between spectral 

yellow and other measures are not always found (Mollon & Jordan, 1997, Webster, 

Miyahara, Malkoc & Raker, 2000).  

 Any such compensation could not only promote uniformity in perception across 

observers (perhaps a questionable benefit), but could also improve stability in perception 

over the life span (Werner, 1998). It could also minimize differences between sensations 

from the two eyes, or different regions in the same eye. Donders (Donders, 1884, Mollon 

& Jordan, 1997) reports the case of a certain Dr. Sulzer, whose two eyes gave different 

impressions for spectral lights but were in agreement for more natural, broadband stimuli. 

In a more extreme instance, Peter Lennie and I (MacLeod & Lennie, 1976) studied a 

unilateral deuteranope, RH. Using his dichromatic eye RH saw colours ranging from 

orange at long wavelengths, through desaturated green, to a slightly reddish blue at short 

wavelengths. This is qualitatively consistent with expectation for a system designed to 

minimize, for each deuteranopic chromaticity, the average disagreement with the 

trichromatic eye. A similar suggestion was made for unilateral tritanopia by Alpern, 

Kitahara and Krantz (Alpern, Kitahara & Krantz, 1983).  I have tried (MacLeod & 
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Lennie, 1976) to demonstrate a monocular compensation process experimentally by 

wearing goggles with a red filter over one eye and a green filter over the other, but this 

failed to produce an obvious perceptual asymmetry. Recent binocular experiments are 

more encouraging (Yamauchi, Williams, Carroll, Neitz & Neitz, 2001). Perhaps the 

adaptation process has difficulty treating the two eyes independently. Monet’s reaction to 

unilateral cataract surgery (Werner, 1998) is relevant: with the operated eye things 

appeared too blue, with the other eye too yellow. 

   

7. Colour constancy: the “anchoring problem” for natural scenes  

Ambiguity of mean chromaticity: the anchoring problem. The cone excitations 

associated with a reflecting surface depend both on the surface spectral reflectance 

function and on the spectral power distribution of the illuminant. The effects of the 

illuminant are determined by the interplay between lights and surfaces in the natural 

environment. If vision is to achieve constancy of apparent surface colour under changing 

illumination, those effects must be allowed for, by a kind of reciprocal mapping from 

cone excitations to colour appearance. 

Fechner and Helmholtz recognized that logarithmic compression of the cone 

excitations—or, equivalently, sensitivity changes associated with adaptation—could play 

a key role in making surface colours independent of the illumination despite changes in 

the retinal stimulus. Fechner (1860) noted that when the sun comes out from behind a 

cloud, all the logs of the cone excitations go up by the same amount and the differences 

of the logs are invariant change. A reciprocal adjustment of sensitivity in each cone type, 

a kind of von Kries normalization, will effectively subtract the same number from all the 
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logs. This yields a representation of the scene that’s invariant with illuminant intensity 

(Cornsweet, 1970). But in principle, the effects of changes of illuminant colour need not 

be removable in this simple way—a point made in many modern discussions (e.g. Brill, 

1978, Worthey & Brill, 1986). The difficulty is that in general, a change of illumination 

scales the cone excitations by different factors for different surfaces. Conveniently, 

though, as noted by Foster and Nascimento (1994) the cone excitations for natural 

surfaces are scaled by approximately the same factor with a change of illumination, and 

this would allow the effect of varying illumination to be simply corrected by reciprocal 

adjustments of sensitivity in the different cone types. Jürgen Golz and I (in preparation) 

have found that in the natural scenes of Ruderman et al (1992) the log shift principle does 

apply quite well in the 3 dimensions of cone excitation space. So von Kries normalization 

for each cone type separately could in principle achieve good constancy.  

But this leaves us with a problem, one that Alan Gilchrist (e.g. Gilchrist, Kossyfidis, 

Bonato, Agostini, Cataliotti, Li, Spehar, Annan & Economou, 1999) has called the 

anchoring problem: Although the resulting representation is invariant with illumination as 

desired, it also shows a less welcome invariance: it fails to reflect the overall chromatic 

cast of a scene, rendering each scene as (on average) indeterminate in colour.  How, then, 

do we know what to normalize by? One idea, sometimes termed the “gray world 

assumption” is that the average chromaticity of the retinal image might be attributed 

entirely to the illuminant, and not to a predominant colouration of the viewed surfaces 

themselves (Buchsbaum, 1980). If this assumption were operative, the space-average 

colour of any scene would be perceptually normalized to gray. But constancy is generally 

not complete: neutral surfaces appear to take on a faint tint of the illuminant colour.  Such 
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“under-constancy” is an aspect of the visual system’s response to the anchoring problem. 

Consideration of the statistical variation among natural illuminants and scenes will show 

that under-constancy is actually not a failure of constancy, but an appropriate best guess 

about illuminant colour, appropriately based on knowledge of relevant environmental 

statistics. 

 

An ecological rationale for under-constancy.  Under-constancy would not be 

expected if the gray world assumption were strictly applied. But it may instead reflect 

commitment to a weaker but more justifiable probabilistic version of that assumption—

an assumption that the overall chromatic cast of an individual scene is most likely to be 

neutral, but that exceptions are frequent enough that deviations from overall neutrality of 

the retinal image can most plausibly be ascribed to a combination of a chromatic 

illuminant with a similar chromatic bias inherent in the scene itself. The statistics of 

natural scenes and illuminants determine what particular apportionment of image colour 

to the illuminant is most statistically justifiable. 

Consider a set of images generated by randomly sampled natural scenes and 

illuminants. For each image with mean chromaticity rimage, let rscene be the mean surface 

chromaticity (the mean of r) for that external scene when observed under neutral 

illumination, and rsource be the illuminant chromaticity. Let  drscene,  drsource and drimage 

represent the deviations of rscene, rsource  and rimage from the mean chromaticity for all 

naturally  occurring scenes, illuminants and images respectively. The distributions of 

drscene and  drsource will be independent; if we assume they are approximately Gaussian, 

then the joint distribution is bivariate Gaussian, and  contours of constant likelihood in 
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(drscene , drsource) are origin-centred ellipses oriented along either the drscene or the drsource 

axis (Figure 4). The loci of constant mean image chromaticity (drimage) in (drscene, drsource) 

will be approximately the negative diagonals, reflecting the equal contributions of 

illuminant and mean scene chromaticity to the image mean chromaticity: drimage. =  

drscene+drsource.    (There is no exact and general relation between image, source and 

overall scene chromaticities, but the simulations of Figure 6 below support this intuitively 

plausible and simple relationship as an approximation for natural conditions). 

Consequently, for a given value of drimage, the corresponding negative diagonal defines 

the various possible origins (or interpretations) of the image in terms of average surface 

chromaticity drscene and illuminant chromaticity  drsource. 

If the image chromaticity is attributed entirely to the illuminant and the scene is 

assumed neutral—the gray world assumption—the inferred values of drscene and drsource 

become simply 0 and  drimage respectively, and this is what is regarded as “full 

constancy”. But other combinations of illuminant and scene characteristics drscene  and 

drsource are actually more likely. The most likely combination is specified by the point 

(drscene*, drsource*) where the negative diagonal  

drscene  + drsource  = drimage  

is tangent to some constant-likelihood ellipse (Figure 4). At other points on the 

diagonal, a lower likelihood will prevail, since likelihood decreases monotonically with 

distance from the origin along any radius.  To determine drscene*  and  drsource*, note that 

any ellipse of constant likelihood has an equation of the form  

(drscene /σscene)2  + (drsource/σsource)2  =  constant 
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 where σscene and σsource are the standard deviations of rscene across scenes and of 

rsource across illuminants. The slope of such an ellipse is -(drscene/drsource)(σsource/σscene)2.  

Hence the tangent point satisfies the equation 

drscene / drsource = (σscene/σsource)2 

Combining the last two equations, the relation between rimage and the parameters 

(drscene*, drsource*) that give the most likely interpretation of the image is   

drscene* = (drimage)(σscene)2/(σscene
2 + σsource

2) 

drsource* = (drimage)(σsource)2/(σscene
2 + σsource

2) 

Equivalently, 

drsource*/drimage  = (σsource)2/(σscene
2 + σsource

2) 
 

This last equation gives the ecologically optimal degree of “underconstancy”. It 

expresses the maximum likelihood estimate of the illuminant chromaticity as a fraction of 

the “gray world” estimate that attributes the image chromaticity entirely to the illuminant. 

That fraction is about 0.5 for the case of equality between σscene and σsource, 

This last equation gives the ecologically optimal degree of “under-constancy”. It 

expresses the maximum likelihood estimate of the illuminant chromaticity as a fraction of 

the “gray world” estimate that attributes the image chromaticity entirely to the illuminant. 

That fraction is about 0.5 for the case of equality between σscene and σsource, 

For the Ruderman et al. scenes and the Judd-MacAdam-Wyszecki daylight 

distribution (Wyszecki & Stiles, 1982), σscene tends to be less than σsource  but comparable 

in magnitude; for Krinov’s spectral data for the space-averages of natural terrains, scene 

variation is greater and may exceed illuminant variation (Brown, in press). 
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Environmental statistics therefore call for a considerable degree of “under-constancy”.  

Observers who show moderate under-constancy are closer to a statistically optimal 

partitioning of scene color into illuminant and surface color components than those who 

show full constancy. In this sense the nearly complete constancy typically found in 

natural conditions (Kraft & Brainard, 1999), or suggested by color appearance 

judgements even in severely reduced situations (Thornton & Pugh, 1983), is excessive. 

This conclusion has relevance for a fundamental and long-debated question about the 

mechanistic basis of constancy. Full or nearly full constancy is to be expected if 

constancy corrections are shaped by reciprocal sensitivity regulation in the retina. A 

sophisticated and statistically informed interpretation of the available cues would lead to 

less complete constancy than is observed. It is possible, however, that nearly complete 

constancy under natural conditions is supported in part by cues other than space-average 

colour of the image (Kraft & Brainard, 1999). One source of such cues, considered next, 

is the distribution (in colour space) of the component elements of the scene.  

Possible disambiguating cues from other image statistics. We have seen that the 

anchoring problem originates from an ambiguity: the overall chromatic cast of the retinal 

image could reflect the predominant colour of the surfaces, or the colour of the 

illuminant. This ambiguity can be expressed as a problem of discrimination: a reddish 

scene under white light can produce the same mean stimulation as a neutral scene in red 

light. How can we tell those two apart? Various potential cues that have been identified 

and studied, e.g. mutual illumination (e.g. Bloj, 1999) and specular reflections (Lee, 

1986) turn out to be at best weakly effective.  
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Jürgen Golz and I have found that higher order statistics of the cone excitation 

distribution for the surfaces within a natural scene provide a possible basis for solving the 

anchoring problem—even if the mean redness of a neutral scene under red light and a red 

room under neutral light are the same, the higher order statistics will generally be 

different—and we found evidence that the visual system is sensitive to that information 

and may use it appropriately to achieve colour constancy. In particular, the correlation 

between surface chromaticity and intensity within an image appears to be a useful and 

effective cue for constancy. 

Reddish surfaces have the colour that they do because they reflect a larger 

proportion of long-wavelength than of short-wavelength light. This suggests that in the 

room lit by reddish (predominantly long-wavelength) light, the reddish surfaces will be 

more luminous relative to other colours within the scene owing to the greater overlap of 

their spectral reflectances with the spectral range in which the illuminant has its highest 

power. As a result, the reddish light cast on the predominantly neutral scene will not only 

shift the mean image chromaticity toward red but, will create a correlation between 

redness and luminance among the elements of the retinal image - a correlation which will 

be absent (or less positive) in the case of the reddish scene under neutral illumination. 

This intuition is confirmed by an analysis of natural images. Thus, a high luminance-

redness correlation within the image is evidence that the illuminant is reddish, no matter 

what the mean chromaticity. By evaluating both mean and correlation, two independent 

quantities, an observer can estimate two unknowns – the predominant colour (in this case, 

the degree of redness) inherent in the objects making up the scene, and the redness of the 

light source that illuminates the scene. In this way, statistics of the distribution of 
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luminance and chromaticity within the retinal image might resolve the ambiguity 

encountered in considering mean chromaticity alone (Fig. 5). 

 

Simulation using natural scene data. To check how well chromatic statistics in 

images of natural scenes can support inferences about illuminant colour, we used the 

hyperspectral data for the scenes of Ruderman et al. (1998). To these 12 scenes four CIE 

daylight illuminations (Wyszecki & Stiles, 1982, pp142-146) were applied (correlated 

colour temperatures 4,000K, 5,500K, 8,500K, 20,000K; with increasing correlated colour 

temperature the illuminants become less reddish (lower r-values) and more bluish (higher 

b-values)). For each illuminated scene several statistics (mean, variance, correlation, 

skewness) of the luminance and chromaticity values were calculated. Somewhat 

discouragingly at first, all statistics we evaluated except the means were almost 

independent of illumination. Although within each of the 12 scenes individually, the 

reddish surfaces became relatively more luminous when the illumination became more 

reddish, this increase in luminance for reddish surfaces was too weak to introduce 

consistently higher luminance-redness correlations for images under more reddish 

illumination. The correlations were indeed almost independent of illumination. 

It turns out, however, that the correlation measure can nevertheless resolve the 

ambiguity inherent in the mean image chromaticity, because when used together with the 

mean image chromaticity it separates the clusters of images from different illuminations 

(the four diagonally oriented clusters in Fig. 6) and permits the estimation of illumination 

colour. Thus an image with a mean r value of 0.7 could be a slightly reddish scene under 

neutral light or a neutral scene under reddish light (Fig. 3). But if the visual system takes 
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into account the correlation between redness and luminance, it can distinguish between 

illumination redness and scene redness. The more positive the correlation, the greater the 

evidence for redness of the illumination. In the above example image A belongs with 

high probability to the cluster of the reddish 4,000K illuminant whereas image B is a 

reddish scene under more neutral 5,500K illumination. 

The reason why the luminance-redness correlation can resolve the ambiguity 

inherent in the mean is that scene redness and illuminant redness affect the correlation 

differently. Under “neutral” lighting, the eye’s spectral sensitivity may favour the neutral 

or comparatively reddish pixels within a neutral or greenish scene, but the eye’s 

diminishing sensitivity at long wavelengths will discriminate against the most reddish 

pixels of a reddish scene, and these will therefore tend to be of low luminance.  The 

luminance-redness correlation thus becomes more negative the more reddish the scene, as 

the sloped regression lines in Fig. 6 show. No comparable effect occurs if it is not the 

scene, but the light that is reddish. In this case, the low luminosity of reds is 

counterbalanced by the illuminant's greater energy at long wavelengths. Reddish scenes, 

but not reddish illuminants, generate images with negative luminance-redness 

correlations. The ambiguity inherent in mean image chromaticity can thus be resolved.  

 

Is this cue exploited? Experimental tests. To find out whether human vision 

exploits scene statistics in this way, we used stimuli of a type introduced by R.Mausfeld 

and J. Andres (Mausfeld, 1998, Mausfeld & Andres, 1999)) which make it possible to 

vary independently various statistics (means, variances, correlations) of the distribution 

of colour and lightness within the display. A circular test field was surrounded by random 
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patterns of overlapping circles; these were of a fixed diameter but varied in colour and 

luminance to a degree typical of the natural scenes of Ruderman et al. We asked subjects 

to adjust the colour of the test field so that it appeared neutral grey. 

In our main experiment we varied the luminance-redness correlation for the 

elements surrounding the test field (by introducing a linear dependence between log(r) 

and log(luminance)) independently of other statistics (means and variances). For a given 

condition, the chromaticity and luminance values for the circles in the surround were 

chosen to achieve a certain correlation value (-1.0, -0.8, 0.0, 0.8 or 1.0). If the perceived 

colour of the centre test spot was not influenced by the varied correlation, then the 

settings to make the test spot neutral grey should be the same for all 5 conditions, since 

the space-averaged chromaticities of the surrounds were the same. The surrounds would 

then be functionally equivalent with respect to the perceived colour of the centre test 

spot. 

For conditions with higher correlation between redness and luminance, a more 

reddish chromaticity was required to make the test field subjectively achromatic (Figure 

7). The data for eight of ten subjects tested were quantitatively similar and individually 

statistically significant (p < 0.001, linear trend test). When the correlation between 

redness and luminance was positive, subjects selected a physically more reddish (higher 

r) test field as neutral grey. Since higher r values are associated with redder illumination 

of a physically neutral surface, this is the result expected if the observer infers a more 

reddish illumination in the case of positive luminance-redness correlation, and perceives 

neutral grey when a correspondingly reddish light stimulus is received from the test field. 
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Though small, the effect of the luminance-redness correlation is not inconsequential; for 

comparison, a just noticeable difference in r is only about 0.001 (Figure 3). 

These results are consistent with other recent work showing that the correction 

subserving colour constancy is not governed merely by the space-averaged chromaticity 

(Bäuml, 1994, Brown & MacLeod, 1997, Jenness & Shevell, 1995, Kraft & Brainard, 

1999, Mausfeld & Andres, 1999, Webster & Mollon, 1997); some current colour 

constancy algorithms provide general frameworks for effects of this sort (Brainard & 

Freeman, 1997, D'Zmura, Iverson & Singer, 1995, Forsyth, 1990).  

Is the luminance-chromaticity correlation cue given appropriate weight? How 

much weight should a smart visual system give to the correlation between redness and 

luminance in estimating the illumination? To answer this question for our simulated 

world of natural scenes under different illuminations, we calculated a maximum 

likelihood estimate for the chromaticity of the illumination given the mean and 

correlation value of an image. An optimal observer, adopting this maximum likelihood 

estimate, would have reacted to the stimuli of our experiment much as our observers did, 

giving only about 30% more weight to the correlation cue than is implied by the straight 

line fit to the data of Figure 7.  The size of the observed effect of this statistic on colour 

perception is therefore roughly consistent with optimal computation.  
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LEGENDS 

 

Figure 1. Distribution of Brown’s haphazard sample of natural colours in the 

(L,M) plane of cone excitation space. Linear co-ordinates show a clustering near the 

origin. Slicing pattern at left achievable by independent L and M cone signals (for which 

the constant response are vertical and horizontal lines respectively). Slicing pattern at 
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right uses a luminance signal (lines of negative slope) and a red-green opponent (L-M) 

signals (lines of positive slope). 

 

Figure 2. Crosses: frequency distribution of log10(b) for Ruderman et al.'s set of 

natural colours; b specifies S cone excitation per unit luminance, i.e.  b = S/(L+M). 

Whites and greens are near the middle of the distribution, with equal energy white at 

log10(b)=0. To the right of that lie bluish colours; to the left, generally yellowish or 

reddish ones. Candidate input-outputs functions: pleistochrome (circles), compared with 

linear(squares) and stepwise alternatives.  

 

Figure 3. Circles, with straight lines fit, show ∆r, the difference in r =L/(L+M) 

just sufficient for 84% correct discrimination between isoluminant, non-adjacent test and 

standard stimuli, embedded in a common white surround, as a function of value of r for 

the standard stimulus. The surround was an equal energy white, for which r = 0.70; hence 

abscissa values of .707 and .693 correspond to a 1% L cone contrast between standard 

and background.  

Dashed lines show predictions for the extreme cases of linear encoding 

(horizontal dashed line: threshold is independent of reference colour) and step function 

encoding (steep dashed line: discrimination is only categorical). The inset illustrates these 

encoding schemes. 

 

Figure 4. Ecological basis for underconstancy. The horizontal axis represents 

illuminant redness  and the vertical axis represents the scene-averaged inherent redness of 
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illuminated surfaces, each expressed as a deviation from its average for natural 

environments (drsource , horizontal axis and drscene , vertical axis).  If these have 

approximately Gaussian and independent distributions, the contours of constant 

likelihood in their joint distribution will be approximately ellipses, as shown.  A given 

reddish image is consistent with the various pairings of scene and illuminant redness 

traced out by the indicated line of slope –1. The most likely interpretation of the image is 

that both scene and illuminant are slightly reddish rather than that the redness originates 

in either one alone. 

 

 

Figure 5. (a) The ambiguity of the mean image chromaticity for estimating the 

illuminant and how it could be resolved by higher order statistics. A given mean image 

chromaticity could result either from a reddish scene under white illumination or from a 

white scene under reddish illumination. (b) Taking higher order statistics into account  

can resolve this ambiguity. 

 

Figure 6. Luminance-redness correlation and mean redness for images formed by 

natural scenes viewed under 4 different illuminations. The vertical coordinate of each 

data point represents the correlation between pixel redness (r) and pixel luminance within 

an image of a particular scene under a particular illuminant. This correlation is plotted 

here against space average image redness (the mean of r averaged over the entire image). 

The four clusters each show data for 12 natural scenes under one of four different CIE 

daylight illuminants (¾: colour temperature 4,000K, Ο: 5,500K, �: 8,500K, ¯: 
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20,000K). For a given scene, the luminance-redness correlation is almost independent of 

illumination, but within each illuminant cluster the correlation is more negative for the 

redder scenes, as shown by the negatively sloped regression lines. Thus correlation and 

mean together separate the distributions of images resulting from different illuminants 

and make it possible to distinguish scene redness from illuminant redness in a way that is 

not possible using mean image redness alone. 

 

Figure 7  Dependence of centre test spot settings on the luminance-redness 

correlation within the surround.  Average results for all subjects (circles), together with 

the best fitting straight line. Error bars for the experimental results are ± one standard 

error for variability between subjects (subject sampling error); variability of individual 

subjects settings is much smaller.  

 

 Table 1. L cone contrasts (for luminance and for isoluminant red-green direction) and S 

cone cone contrast (for isoluminant blue-yellow direction) for which colour 

discrimination thresholds are doubled (“Psychophysical”) column. “Neural” column 

shows rough estimates from physiological data of the contrast at which the gradient 

contrast-response function relevant neurons falls to half maximum.  
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