
Chapter 7

For a Fistful of Entropy

[... N]o one knows what entropy really is, so
in a debate you will always have the advantage.

J. von Neumann

Among the thermodynamical terms that demand a statistical mechanical
conceptualization, the case of entropy is an illuminating one. Originally
invented by Clausius as a state function of an individual system in equilib-
rium which measures its energy degradedness, entropy remains one of the
most elusive theoretical concepts in modern physics. The problem with TD
entropy, as defined by Clausius and presented in the first section of this
chapter, is not that it lacks a statistical mechanical analogue. Given that
entropy is one of the most abused thermodynamical terms outside TD, it is
natural that the situation in SM is quite to the contrary: SM seems to offer
multiple realization of entropy, and the problem transforms into a case of a
coherent choice between possibilities.

TD entropy, which is defined only in equilibrium state, has two coun-
terparts in SM: Boltzmann’s and Gibbs’ entropies. In classical SM the
two definitions of entropy yield similar, yet not identical, results in cer-
tain circumstances,1 but rest on different conceptual foundations: the first
applies to individual systems; the second to ensembles of systems. Notwith-
standing instrumental arguments for preferring the latter, the aim of the
second section of this chapter is to establish the conceptual superiority of
the former in the classical realm.

In the third section we shall present the quantum mechanical entropy,
1E.g., for an ideal gas in equilibrium. See Jaynes (1965).
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the von Neumann entropy, and discuss some technical details necessary for
evaluating the plausibility of the decoherence and the GRW approaches in
the foundations of SM. Remarkably, Gibbs’ old neglected fine-grained en-
tropy becomes an attractive candidate in this regime. Finally in the fourth
section we explore how the different approaches divide the above inventory
of entropies between them.

7.1 Holy Entropy, Its Boiling! (G. Gamov)

Historically, heat was conceived as a weightless, elastic and fluid substance,
or caloric, but at the end of the 17th century, after being the subject of
much respectable scientific work, it was pronounced non-existent, and the
caloric theory of heat was put on the shelf.2 The concept of energy was
introduced in 1847 by Helmholtz, who cited the work of Joule and used
the term Kraft to denote the causal power of nature to act upon matter.
Helmholtz contemporaries and successors believed that energy was present
in bodies in two main forms only: (i) as energy of motion, or kinetic energy,
equal to one-half the body mass times its squared velocity, and (ii) as energy
of position or potential energy, equal to the work that must be done against
ambient forces to carry the body from a position of (conventionally) zero
potential energy to its present place. It was Joule’s contribution that led
to the recognition of the principle of conservation of energy. In this context
heat was then regarded as kinetic energy.3

Already within the caloric theory of heat it was known, due to Sadi
Carnot, that just as water yields mechanical work as it falls from a higher
to a lower level, so does heat, then regarded as a substance, yields mechanical
work as it falls from a higher to a lower temperature. Carnot showed that
the efficiency of a heat engine, i. e. , the amount of work it can obtain from
a unit of heat as this falls to a lower temperature, has an upper bound that
depends only on the temperatures between which the engine operates.

The two principles, the first and the second laws of TD, were the building
blocks of the new science of heat, founded by Clausius and Kelvin in the
midst of the 19th century. Kelvin and Clausius gave two different versions of
the second principle, embodying the gist of Carnot’s idea without the water
metaphor:4

2For a detailed report see Fox (1971).
3Maxwell (1883).
4The citations are taken from Fermi (1936, 30).
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A transformation whose only final result is to transform into
work heat extracted from a source which is at the same temper-
ature throughout is impossible (Kelvin).

A transformation whose only final result is to transfer heat from
a body at a given temperature to a body at a higher temperature
is impossible (Clausius).

Building on Carnot’s work, Kelvin developed the absolute scale of tem-
perature and, more relevant to us, Clausius the concept of entropy. It was
defined by using the ratio between the amount of heat, Q, and the tem-
perature, T, in a cyclic Carnot engine E . Multiplied by the temperature
difference in such an engine this ratio yields the amount of work that the
engine can produce. Because this work has an upper bound, and because
all reversible Carnot engines have the same efficiency, in this special case of
reversible thermodynamic process entropy is a conserved quantity.

In the general continuous case of exchanging infinitesimal quantities of
heat we then get:

∮

E
dQ

T
≤ 0. (7.1)

the integral being taken over a complete cycle of E . If the cycle is re-
versible we get,

∮

E
dQ

T
= 0. (7.2)

and because the integral is independent of the course of the process then
given a conventional reference state O, we can now define a property of the
thermal state A by:

S(A) def=
∫ A

O
dQ

T
. (7.3)

Clausius called the quantity S(A) the entropy of A. Evidently we get:

∫ B

A
dQ

T
=

∫ O

A
dQ

T
+

∫ B

O
dQ

T
=

∫ B

O
dQ

T
−

∫ A

O
dQ

T
= S(B)− S(A). (7.4)

The definition of entropy as a property of state in eqn. (7.3) presupposes
that the integral on the right-hand side depends only on O and A. The

3



integral must therefore be taken over a continuous succession of reversible
or quasi-static heat exchanges. But once entropy was defined as a property
of thermodynamic systems, one may well compare the entropy difference on
the right-hand side in eqn. (7.4) taken over a continuum of arbitrary heat
exchanges. Consider a cycle formed by an arbitrary process from A to B
combined with a reversible one from B to A. We then get by eqn. (7.1),

0 ≥
∮

ABA
dQ

T
=

∫ B

A
dQ

T
+

∫ A

B
dQ

T
.

Hence, by eqn. (7.4),

0 ≥
∫ B

A
dQ

T
+ S(A)− S(B).

and in the general case:

S(B)− S(A) ≥
∫ B

A
dQ

T
. (7.5)

If the process under consideration occurs in a completely isolated system,
dQ = 0; therefore, the entropy of the final state B is always equal to or
greater than that of the initial state A. Thus, in a closed thermodynamic
system the entropy can never decrease .5

Three remarks are in order. First, note that Clausius – relying as he was
on the intuitive premise of the impossibility of a perpetuum mobile of the
second kind which states that heat cannot, of itself, pass from a colder to a
hotter body – introduced entropy as a primary concept. This has led many
to regard irreversible phenomena as essential to the proof of the existence
of entropy. Thus Sklar (1993, 21) writes:

The crucial fact needed to justify the introduction of such definite
entropy value is the irreversibility of physical processes. It is the
fact that heat engines cannot not only not generate mechanical
work without the consumption of heat, but that they cannot be
run in such a way as to produce work without degrading the

5Note that this result applies only to isolated systems. Thus, it is possible with the
aid of external system to decrease the entropy of a system. The entropy of both systems
taken together, however, cannot decrease.
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quality of heat in the world, that is crucial to the proof of the
existence of entropy.6

But clearly the existence of the definite state function S, rather than be-
ing a consequence of the irreversible character of spontaneous heat processes
is a result of nothing more than the mere fact that the integral

∫ B

A
dQ

T

depends only on the extreme states of the transformation and not on the
transformation itself.7 This point is important since in many textbooks
on SM misleadingly state that the second law of thermodynamics ‘drives’
systems to their equilibrium states and that entropy increases monotonically
during this approach to equilibrium.

Sklar should have been more cautious to spell out exactly what he means
when he says a sentence later that ‘the fundamental fact of irreversibility
is summarized in the second law’. The second law simply states that when
a process is irreversible, that is, in Clausius’ terms, non-quasi-static,8 then
the entropy difference between its initial and final states is positive. It
is true that a simple reasoning leads to the conclusion that when a system
reaches its maximum entropy state then it stays their forever unless external
intervention drives it away from this state, but the fact that thermal systems
spontaneously evolve towards equilibrium is not encompassed in the second
law unless further conditions are satisfied.9 In sum, the connection between
entropy and the second law, if there is one, is quite simple and unfortunately
different than what Sklar wants us to believe: the essential content of the
second law of thermodynamics is the existence of an entropy function (and
of absolute temperature) for every equilibrium state.10

Next, the classical understanding of Carnot cycles on which Clausius
relies involves ‘quasi-static’ processes and these are by definition traceable by
trajectories (or transformations) entirely contained in the space of possible

6By now the attentive reader begins to appreciate the sloppy editorial mistakes Sklar’s
monumental book suffers from. This is surprising since a good editor could have made
the book much shorter yet no less monumental...

7Fermi (1936, 49–50).
8Uffink (2001, 318–319).
9For more on the truth and myth behind the second law see Uffink (2001) and Uffink

and Brown (2002). These issues are discussed below in chapter eight.
10This result is also known as the Heat Theorem. See also Emch and Liu (2002, 78).
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states of the system. But since all that is needed to construct the entropy
function is that the initial and final states belong to this space, the value
of the entropy function depends only on the state and not on its history.
From this it clear that TD entropy can be defined only in equilibrium, and
that rather than a primary concept, entropy should be best regarded as
derivative.11

Finally, Clausius’ definition of entropy requires an arbitrary choice of
a standard state. It can be easily shown that the difference between the
entropies of a state A obtained with two different standard states is a
constant,12 and since we are dealing with entropy differences this indetermi-
nacy should not trouble us. However, it was only the third law of TD which
completed the entropy definition and enabled to determine this constant.

So far we have described TD entropy as a state function of an individual
system in equilibrium which never decreases in thermodynamical transfor-
mations. But as function entropy has many more properties, of which three
– additivity, extensivity, and concavity – are important to the discussion
that follows.

1. Additivity. Assuming that the energy of a system is the sum of the
energies of all its parts, and that the work preformed by the system is
equal to the sum of the amounts of work preformed by all the parts, the
entropy of a composed system is equal to the sum of the entropies of
all its parts. In the axiomatic framework of Lieb and Yngvason (1999)
the requirement of sum functions is subsumed under the axioms, i.e.,
under the definitions of adiabatic processes and states in state space.
It is then possible to write

S(X ,Y) = S(X ) + S(Y). (7.6)

for every state of any composed system.13

2. Extensivity. An extensive variable scales with the size of a macro-
scopic system. Thus, entropy, energy and volume are extensive (but
temperature is intensive) and we can write for each t > 0 and for each

11A way to formulate TD in these terms was pioneered by Cartheodory in 1909 and was
later consolidated by Giles (1964) and Lieb and Yngvason (1999).

12Fermi (1936, 52).
13Recall that X and Y are equilibrium states on the state space the system.
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state X and its scaled copy tX :14

S(tX ) = tS(X ). (7.7)

3. Concavity. Assuming that the state space of a thermodynamic sys-
tem is a convex set, the entropy of an isolated system is a strictly
concave function of its arguments.15 Why is concavity considered im-
portant? It means that for λ1, λ2 > 0;λ1 + λ2 = 1:

S((X ⊕ Y)) ≥ λ1S(X ) + λ2S(Y). (7.8)

where equality holds when X = Y or when the λs are 0 or 1. We
shall see that when one moves to SM, entropy is usually regarded a
measure of the lack of information, hence if two ensembles of identical
systems in different states X and Y are fitted together,16 one looses
information that tells from which ensemble a specific sample stems,
and therefore entropy increases.

Summarizing, entropy in TD is a well-defined state-function of an in-
dividual physical system in equilibrium. Its elusive character, however, is
revealed once we move to the realm of statistical mechanics and join the
quest for the ‘holy grail’ – a mechanical model for thermal phenomena.

7.2 Entropy in SM - Boltzmann vs. Gibbs

The gap between continental philosophy and the Anglo-American tradition
has drawn much attention in many different contexts. It is thus not surpris-
ing that also in classical SM two orthodoxies – continental and American –

14A scaled state space is physically interpreted as a state space of a system whose
properties are the same as in the original one, except that the amount of each chemical
substance in the system has been scaled by the factor t and the range of other extensive
variables, e.g., energy, volume, has been scaled accordingly.

15We say that a function f is (strictly) concave if −f is (strictly) convex. What is
convexity? Let Rn denote n-dimensional Euclidean space (i.e. the set of all real-valued
vectors of length n). A subset D of Rn is said to be convex if, ∀(x, y) ∈ D, and ∀λ ∈ [0, 1],
we have λx+(1−λ)y ∈ D. (i.e., for any two points in D, the line segment connecting the
two points lies entirely in D). Now Let f be a function defined on a convex subset D of
Rn . We say that f is convex if ∀(x, y) ∈ D and ∀λ ∈ [0, 1], we have f(λx + (1 − λ)y) ≤
λf(x) + (1 − λ)f(y) . For function f defined on R, this inequality says that the chord
connecting any two points on the graph of f lies above the graph. If equality holds if and
only if either x and y are identical, or λ = 0 or λ = 1, then f is said to be strictly convex.

16What in the mathematical language is described by a ‘convex combination’ of λ1X +
λ2Y, and is noted here with the sign ⊕.
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clash. Back in the continent contemporary debates on the atomic hypothesis
and the kinetic theory led Boltzmann to introduce his concept of entropy.
On the other side of the ocean it was Gibbs who formulated SM in pragmatic
terms of which one was his coarse-grained entropy. Both approaches and the
entropies they introduce as counterparts to the thermodynamic concept pre-
sented briefly above are in many cases in perfect agreement in equilibrium
states. Yet, as a matter of fact, Gibbs’ approach governs the literature. It is
the purpose of this section to persuade the reader that from a foundational
point of view and within the context of constructing a mechanical model
for thermodynamic phenomena on the basis of Hamiltonian dynamics, one
should prefer Boltzmann’s entropy to Gibbs’.

My strategy in achieving this goal is an old one. Rather than defending
Boltzmann’s entropy I am going to attack Gibbs’. The tactic, however, is
novel. I am going to elaborate on a long forgotten essay of Carnap (1977)
written when he was a visiting fellow in Princeton. What is interesting in
this essay is that although Carnap is right on the money when he criticizes
Gibbs’ approach and the hastiness in identifying entropy with information-
theoretic uncertainty which accompanies it, he does so on the basis of what
he considers an epistemological flavour which the Gibssian approach intro-
duces into an otherwise strictly physical context. This, unfortunately, blunts
his criticism since he can be accused of committing the fallacy of exchang-
ing ‘subjectivity’ with ‘contextuality’. By amending this flaw I expose the
genuine and more serious problem in Gibbs’ coarse-grained entropy and con-
clude that within the standard Hamiltonian framework Boltzmann presents
a far more desired alternative to the foundations of SM.

7.2.1 Gibbs

In Gibbs’ approach one represents the microstate of a physical system with
N particles each with f degrees of freedom by a point X ∈ Γ where Γ, the
phase space of the system, is a 2Nf -dimensional space spanned by the Nf
momenta and Nf configuration axes. As the system evolves this representa-
tive point will trace out a trajectory in Γ which obeys Hamilton’s equations
of motion.17

Next, one considers a fictitious ensemble of individual systems (repre-
sented by a ‘cloud’, or a ‘fluid’, of points on phase space) each in a microstate
compatible with a given macrostate (say, such and such energy in such and

17See Gibbs (1902) and Appendix B.
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such pressure contained in such and such volume). The macroscopic pa-
rameters thus pick out a distribution of points in Γ. We then ascribe a
normalized density function to the ensemble, ρ(p, q, t), and, except for en-
tropy and temperature, the mean value of phase function with respect to ρ
describes the system’s thermodynamic properties.18

For entropy Gibbs chooses the expression

SFG(ρ(X)) = −K

∫
ρ(X)[logρ(X)]dΓ. (7.9)

where the integral is over Γ and K is Boltzmann’s constant.

For isolated systems we use the microcanonical probability distribution
in (7.9),19 and this will match up to an additive constant the value for TD
entropy. Eqn. (7.9) also allows us to define a temperature. Remarkably,
using these definitions Gibbs recovers the familiar thermodynamic relations
for systems in equilibrium.

All this is so very fine, but if Gibbs’ systems obey Hamilton’s equations
of motion then the ‘cloud’ representing them in phase space swarms like an
incompressible fluid.20 Consequently his ‘fine-grained’ entropy as defined in
(7.9) is invariant under the Hamiltonian flow:

dSFG(ρ)
dt

= 0. (7.10)

If there is a problem in SFG it is not just the fact that it does not
move. Recall that TD entropy is defined only in equilibrium, so in order to
construct a mechanical counterpart one only needs to find a function whose
value at a later equilibrium state is higher than at an earlier equilibrium
state.21 But since the macroscopic parameters change between the two
equilibrium states, the Gibbs’ approach has no problem in doing this just
by defining a new ensemble with a new probability distribution for the new
equilibrium state and this will match the thermodynamic entropy as before.

This solution, however, reminds one of a famous exchange in the Journal
of Philosophy where, in commenting on a paper titled “Supervenience Is a

18This follows from the fact that for extensive functions of macroscopic systems with
large number of particles the mean value is identical with the maximum value.

19That is, we regard each microstate as equiprobable.
20This fact is also known as ‘Liouville’s theorem’. See Appendix B.
21Callender (1999, 358).
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Two-Way Street” G. Hellman wrote “Yes, But One of the Ways is the ‘Wrong
Way’ !”22 Indeed, as Callender (ibid.) who follows Sklar (1993, 54) notes, it
is not fair to use the macro-parameters, which are supposed to be derived
from the micro-parameters, in order to construct the latter. In other words,
the ensemble at later equilibrium state should be the Hamiltonian-time-
evolved ensemble of the earlier equilibrium state, otherwise the system is
not governed by Hamilton’s equations as one originally presupposes. Thus,
if one wants to use Gibbs’ fine-grained entropy as a mechanical counterpart
to TD entropy, then one must abandon standard, Hamiltonian, dynamics
since it does not connect the two fine-grained equilibrium states.

That this is the true problem with Gibbs’ fine-grained entropy escaped
many commentators, and as a result the foundations of SM were soon piled
with a lot of dead wood. Stemming from the famous Ehrenfests’ paper
(1912, 43–79) where Boltzmann’s students complained on Gibbs’ treatment
of irreversibility by categorizing it bluntly as “incorrect”,23 the last century
was consumed with attempts to find a monotonically increasing function as
a counterpart for TD entropy.

One way to achieve this goal is to follow Gibbs himself, who introduces
the mathematical trick of ‘coarse graining’ and devises new notions of en-
tropy and equilibrium. In this approach one divides Γ into many small finite
cells of volume ω and then takes the average of ρ over these cells. The result,
ρ̂, is attributed to all the points in the cell Ωi. This allows us to write the
coarse-grained probability distribution as the ensemble density in each cell:

ρ̂ =
1
ω

∫

Ωi

ρ(p, q, t)dΓ. (7.11)

And although ρ is conserved by the Liouville flow, its density in each
cell need not be so. Thus, equilibrium is defined as a state in which ρ has
fibrillated uniformly throughout the available Γ, and by substituting ρ̂ with
ρ in (7.9) one then defines the coarse-grained entropy as:

SCG = −K

∫
ρ̂(log ρ̂)dΓ. (7.12)

But as Callender (ibid., 360) notes, this cannot be the whole story, since
according to Gibbs the irreversible behaviour of SCG is due solely to coarse
graining, that is, to our incomplete knowledge of the microstates:

22Hellman (1992).
23Ehrenfest (ibid., 71).
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Thermodynamic behaviour does not depend for its existence on
the precision with which we measure systems. Even if we knew
the positions and the momenta of all the particles in the system,
gases would still diffuse through their available volume.

Callender, however, is both right and wrong. He is right that in order to
account for irreversibility coarse graining alone is not sufficient. As Ridder-
boss (2002, 69) tells us, to complete the Gibbsian story the dynamics of the
system must also lead representative points far away from each other, that
is, the dynamics should satisfy mixing conditions or any of the stronger con-
ditions in the ergodic hierarchy.24 But Callender claims further that coarse
graining cannot be necessary for the explanation of irreversibility since it
hinges on a kind of epistemological subjectivity which seems irrelevant to
the physical course of events, and although I agree with his further claim, I
beg to differ on the reason behind it.

While it is true that coarse graining introduces a kind of ‘subjectivity’
into SM which presumably not only has no counterpart in TD but also
depends on an arbitrary choice of resolution on the experimenter’s side,
Callender’s criticism and the line of thought it gives voice to has only limited
validity. There are more serious criticisms of the coarse graining method and
the concept of entropy which accompanies it. Before fleshing these out let me
mention here yet another philosopher who took the claim about subjectivity
to its extreme.

7.2.2 Carnap Against ‘Subjectivity’

Carnap’s two essays on entropy were written during his tenure fellowship
at the Institute of Advanced Studies in Princeton between 1952 and 1954.
Here is a passage that summarizes best his conclusion from conversations
concerning entropy with mathematicians and physicists in Princeton:25

It seemed to me that the customary way which the statistical
concept of entropy is defined or interpreted makes it perhaps
against the intention of physicists a purely logical instead of a
physical concept; If so, it can no longer be, as it was intended
to be, a counterpart to the classical macro-concept of entropy

24See Appendix B and also Krylov (1979) who constructs the entire foundations of SM
on the basis of dynamical instability of trajectories in phase space.

25Carnap (ibid., xii).
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introduced by Clausius, which is obviously a physical and not a
logical concept. The same objection holds in my opinion against
the recent view that entropy may be regarded as identical with
the negative amount of information.

The core of Carnap’s argument is that TD entropy has the same char-
acter as temperature, pressure, heat, etc. all of which serve “for the quan-
titative characterization of some objective property of a state of physical
system”.26 Gibbs’ entropy, according to Carnap, cannot be regarded a coun-
terpart to TD entropy since by definition it depends upon the specificity of
the description, hence it is an epistemological rather than a physical concept.

Furthermore, by referring to an unpublished paper of his, “The con-
cept of degree of order”, Carnap (ibid., 10) criticizes the view which regards
entropy as a measure of disorder. If one distinguishes, as he does in his un-
published paper (and as we have done in chapter three, section 3.4), between
epistemic and ontological randomness, it becomes clear that the existence of
genuine randomizing procedure entails disorder, or epistemic randomness,
in any chosen level of description, but the converse does not hold. It then
follows that if entropy is defined in terms of genuine randomizing procedure
or mechanism it would provide more information about disorder in vari-
ous levels than an entropy concept defined in terms of disorder at a certain
chosen level.

In order to see why this line of criticism has only limited validity, and
why, if one wants to reject Gibbs’ entropy on a foundational basis, a more
serious line of criticism should be taken, consider the following three points:

1. Contrary to what Carnap (and Callender) claim, there are many ther-
modynamic entropies, corresponding to different degrees of experimen-
tal discrimination and different choices of parameters. As E.T. Jaynes
(1965, 398) famously remarks, “[E]ven at the purely phenomenological
level entropy is an anthropomorphic concept”. Similarly, in SM the
definition of entropy depends on what macroscopic description of the
system is chosen, and in a given macroscopic description a variety of
definitions are possible.27 If this is so, then (a) Carnap’s reasoning
can be accommodated with the different entropies in TD, to each of
which one can construct a physical objective counterpart, and (b) that

26Carnap (ibid., 35).
27Grad (1961); Penrose (1981).
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human choice dictates the use of this or that family of concepts does
not discredit the objectivity of each member of the family.

2. Even if we accept Carnap’s demand for a randomizing procedure in
the definition of an objective concept of entropy, Gibbs’s approach is
still consistent with such demand. Entropy, according to Gibbs, is
a functional of the probability distribution on Γ. If this probability
distribution were established by a random procedure then Carnap’s
requirement would be fulfilled. A careful reading of Gibbs’ (1902, ch.
14) shows that this is indeed the case – the canonical distribution is
appropriate for a system which has reached equilibrium with a heat
reservoir, while the contact with the latter serves as a physical ran-
domizing process.28

3. Finally, if entropy is defined according to a level of description, and if
the latter is justified by the experimental arrangement and the physics
involved, then this only means that entropy is a contextual, or a rela-
tional, concept, and not a primitive one. Given a specific observer with
a given, fixed, measurement resolution, it is the dynamics of the system
which uniquely determines whether or not a particular non-uniform
probability distribution evolves to a coarse grained distribution which
is uniform with respect to the given measurement resolution.29

The upshot is that if one argues against coarse graining, as Carnap and
Callender do, on the basis of its ‘subjectivity’ alone then one allows the
Gibbsian to escape the criticism through the above three loopholes. It is
one thing to say that the probabilities of SM are purely epistemic, and
another to ground these epistemic probabilities in the physics of thermal
phenomena. Thus, the coarse graining method yields an entropy which is
not subjective but contextual,30 and the more serious criticism of the coarse-

28Note the striking similarity here to the open system approach and the caveat that this
procedure is not genuinely random.

29See Ridderbos (ibid., 72).
30The distinction between these two adjectives was, unfortunately, blurred because of

careless readings of many authorities in physics. Thus for example, Heisenberg (1970, 38)
writes:

Gibbs was the first to introduce a physical concept which can only be applied
to an object when our knowledge is incomplete.

and Born (1964, 72) adds:

Irreversibility is therefore a consequence of the explicit introduction of igno-
rance into the fundamental laws.
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grained entropy lies not in its ‘subjectivity’ but in the fact that this concept
of entropy is foreign to the project of constructing a dynamical model for
thermal phenomena.

7.2.3 The (Real) Case Against Coarse Graining

A short reminder: thermodynamic equilibrium is defined as a state in which
the thermodynamic variables are stationary. Let us call the part of the
theory which involves the relations between these variables in equilibrium
thermostatics, and the rest of the theory which describes the relations be-
tween different equilibrium states thermodynamics.31 Since TD entropy
(which despite the fact that it cannot be measured directly is still a member
of a distinguished small set of the thermodynamic variables) is defined only
in equilibrium, it ‘plays’ its thermodynamical ‘role’ in the relation between
the entropies in two equilibrium states.32

Prima facia Gibbs’ approach satisfies the requirement for reproduc-
ing thermostatics since Gibbs’ ensembles give correct results in equilibrium
states and allows one to recover the correct relations between the thermo-
dynamic variables. Yet this achievement looses much of its appeal as soon
as one recalls that the original project was to do so on the basis of the
underlying dynamics.

In TD it is meaningful to say that a certain individual system, say, a
gas in a box, occupies an equilibrium state. But in Gibbs’ approach an
equilibrium ensemble contains by definition individual systems which are far
away from equilibrium. Without further criteria for identifying the ensem-
ble components it remains unclear how to relate in dynamical terms the
average quantities the equilibrium ensemble yields with the thermodynamic
variables which apply to an individual system. Since Gibbs’ micro-canonical
distribution generates empirically verified predictions, the question here is
not whether but why such relation holds.33

Some may regard these quotes and the acceptance of Gibbs’s approach they advocate as
yet another distressing effect that QM has had upon the foundations of physics.

31Although also here the TD trajectories trace ‘quasi-static’ processes, that is, infinitely
slow transitions from one equilibrium state to another.

32If the process which connects two equilibrium states is not quasi-static no thermody-
namic trajectory can trace it. Nevertheless the entropy difference between the two states
is still a well defined quantity.

33Leeds (1989) goes further and argues that the question is not why but rather why do
Gibbs’ averages work for one observable quickly, and for another slowly. The remarkable
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The gap between Gibbs’ ensembles and the underlying dynamics be-
comes wider when we move from thermostatics to thermodynamics. We
have already mentioned the problem with Gibbs’ fine-grained entropy: there
exists no way to connect two fine-grained entropies in different equilibrium
states with Hamilton’s equations. This is the price we pay when in order
to circumvent the famous reversibility and recurrence objections we define
Gibbs’ entropy as a function of a probability distribution of a fictitious en-
semble of systems, rather than of an individual system.34 Unfortunately, in
paying this price we simply abandon the original goal which was to account
for thermal phenomena with the micro-dynamics.

Presumably, those who insist on maintaining Gibbs’ fine-grained entropy
can live with the lack of dynamical justification for its verified predictions in
thermostatics. Yet even they must admit that Gibbs’ coarse-grained entropy
must be abandoned if it yields false predictions in thermodynamics.

Recall that coarse-graining is invoked because – due to Liouville’s theo-
rem – the fine-grained entropy cannot evolve into a uniform distribution in
phase space which is the mark of ‘true’ equilibrium. As a result an alter-
native concept of equilibrium is introduced in which only an “appearance”
of equilibrium is obtained. Let us call this “apparent” equilibrium ‘quasi-
equilibrium’.35 This ‘quasi-equilibrium’ distribution indeed gives rise to the
same values of macroscopic variables that define the thermodynamic state
of the system as does the fine-grained distribution and for all practical pur-
poses the two definitions are empirically indistinguishable. The fine-grained
entropy, however, is still subject to the dynamical laws which preserve the
correlations between the system’s micro-components and reflect the hidden
‘order’ in the system. These correlations are ignored in ‘quasi-equilibrium’,
and the discrepancy between the ‘true’ and ‘quasi’ equilibria becomes evi-
dent when one is able to control the micro-components of the system, either
directly or indirectly.

As already mentioned in chapter five (section 5.4), the famous ‘spin-
echo’ experiments exemplify exactly such case of indirect control. Since
in these experiments the first RF signal is induced after the spins have
reached ‘quasi-equilibrium’, the echo produced by their alignment after the

fact is that unless one assumes (non-physical) strict ergodicity the microcanonical prob-
ability distribution is even not unique, that is it is not the only one which is preserved
under the dynamics. See Earman and Redei (1996).

34See Callender (ibid., 352) for a lucid formalization of the problem.
35The term was coined by Blatt (1959, 749).
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first signal comes as a complete surprise to the coarse-graining method which
must regard such innocent velocity reversal a violation of the second law.36

Another facet of the same problem arises when one recalls that the fine-
grained distribution – subject as it is to Hamilton’s laws – is also susceptible
to the consequences of Poincare’s recurrence theorem.37 In thermodynam-
ics such recurrence will result in decreasing TD entropy. It is true that, as
Boltzmann remarked to Zermelo, we should live that long to observe such
a state, but what is important here is that the coarse-grained entropy –
increasing monotonically in time as it is – never decreases, hence cannot ac-
count for such true violation of the second law which according to Hamilton’s
equations is possible in principle.38

Summarizing, Gibbs’ coarse-graining approach fails in two ways. First,
as the spin-echo experiments show it predicts a violation of the second law
when there is none. Second, with its insistence on a monotonically increasing
function of entropy it fails to predict such violation when there is one. Both
failures stem from the simple fact that the Gibbs’ approach, in its attempt to
free itself from the dynamical restrictions imposed on an individual system,
becomes irrelevant to the individual system, hence has little to do with the
micro-dynamical origins of thermal phenomena. Consequently, if one’s aim
is to construct a counterpart for TD entropy in classical mechanics one must
abandon Gibbs’ coarse-grained entropy and look elsewhere.

7.2.4 Boltzmann

It has become somewhat fashionable to resurrect L. Boltzmann’s old ne-
glected concept of entropy, especially the reconstructed post-H-theorem en-
tropy recently championed by authorities in statistical physics.39 Boltzmann
introduces a concept of entropy twice along his career: first when he de-
rives the H-theorem, and second, when he defends this theorem against the
reversibility and recurrence objections of Lochsmidt and Zermelo.40 Both
concepts are statistical in character, yet they differ in the origins of the prob-
abilistic assumptions introduced into the underlying dynamics:41 In the H-
theorem it is an assumption about continuous randomization of molecules’

36Ridderbos and Redhead (1998).
37See Appendix B.
38Callender (1999, 366).
39E.g., Lebowitz (1994); Gallavoti (1999); and Goldstein (2001).
40See Klein (1973) for an account of the evolution of Boltzmann’s ideas.
41See chapter five (section 5.1).
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collisions (the ‘molecular chaos’ assumption) which is necessary for the
derivation of a stationary Maxwell-Boltzmann velocity distribution; in the
post-H-theorem case it an assumption of equiprobability of microstates com-
bined with pure combinatory.

Although the former concept of entropy has been described by some,
e.g., Price (1996) as ‘a dead horse’, it is the one that is more related to the
dynamics of the system hence is much closer in spirit to Boltzmann’s orig-
inal goal – that of constructing a mechanical counterpart to TD entropy.42

Setting this involved issue aside, I want to concentrate here on Boltzmann’s
later concept, the one which appears as an epitaph on his tomb in Vienna’s
Central Cemetery.

Contrary to Gibbs’s ensemble approach, Boltzmann’s entropy SB is de-
fined for the actual microstate x of an individual system which corresponds
to a macrostate M(x). The latter, in turn, is compatible with many dif-
ferent microstates. In order to count how many microstates are compatible
with a given macrostate we partition the 6-dimensional energy surface of
the phase space of the N-particles individual system, say, an ideal gas, (this
space is called µ-space) into compartments which are macroscopically indis-
tinguishable – they share the same thermodynamic features – and specify the
number of particles in each cell. Each such specification, or arrangements
(Boltzmann called them ‘complexions’), determines a macrostate. The µ-
space is important only for counting the number of arrangements compatible
with M(x). Once we determine this we are able to associate with each M a
volume in Γ. Different arrangements yield different macrostates and these
partition Γ into disjunctive volumes. The volumes are ‘generated’ by the
projection of the Lebesgue measure onto the energy surface.43 Boltzmann’s
entropy is then defined as:

SB = K log |ΓM(x)|+ C. (7.13)

where K is Boltzmann’s constant, C is an additive constant which de-
pends on N , and |ΓM(x)| is the volume of phase space associated with the
macrostate M(x).

For a gas in a box, where N is in the order of 1023, there are over-
whelmingly more arrangements corresponding to an equilibrium state (where

42A quick survey of the physics literature demonstrates, however, that working physicists
are unimpressed of Price’s remark. Boltzmann’s H theorem gave rise to Boltzmann’s
equation which is one of the most useful equations in statistical physics.

43See Appendix B.
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the macro-parameters are uniformly distributed in the physical space, and
the Maxwell-Boltzmann velocity distribution is uniformly distributed in µ-
space) than, say, to a state in which most of the gas is confined to a certain
corner of the box with nonuniform distributions. Thus, an equilibrium state
occupies almost all the relevant energy surface on Γ. In chapter two (sec-
tion 2.2.2) and in Appendix B we discuss how to translate statements about
volume in phase space into probability statements. We can then say with
Boltzmann that thermal equilibrium is the most probable, or the typical,
state of a physical system.44

Gibbs’ coarse-grained entropy displays one of the characteristics of TD
entropy – strict non-decrease; Boltzmann’s displays another – additivity.
Both functions, however, are concave and extensive. The latter property
allows Boltzmann’s entropy to attain non-decrease except for exceedingly rare
cases. The reason is simple. If one acknowledges the vast separation of scales
between the macroscopic and the microscopic levels then after dividing SB

with the spatial volume of the system one obtains entropy per unit volume
whose differences for different macrostates are of order unity. This means
that if NEQ is a state in which a gas of N particles is confined to half a
container with an external constraint and EQ is a state in which the same
gas is spread all over the container, the ratios of the volumes |ΓEQ| and
|ΓNEQ| is of the order 2N , which in the case of a gas with 1023 particles is
21023

. Thus, there is a probability of 2−1023
that a gas in NEQ would stay

there once an external constraint is dropped.45 Many physicists can live
with that.

7.2.5 A Short Bookkeeping

As in the case of Gibbs’ coarse-grained entropy, this cannot be the whole
story. Since Boltzmann’s entropy measures the number of microstates that
the system is not in but could be in without us noticing, it serves more as a
(quantitative) description than as a causal explanation to thermal phenom-
ena. Surely it cannot be the case that the number of microstates our gas
in a box does not occupy ‘drives’ the gas towards equilibrium. Considering
that one’s project is to construct a mechanical model for TD, the dynam-
ics must play a certain role – if only to justify the probabilistic assumptions
that lead to the definition of entropy as a probability measure. Furthermore,

44Lebowitz(1994); Goldstein (2001).
45This, in fact, is the precise meaning of the term typical. See Goldstein (2001, 43).
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Boltzmann’s approach leaves us with another problem: since the dynamics
of classical mechanics are TRI, unless we postulate an initial low entropy
state for the universe as a whole, nothing prevents entropy from increasing
also towards the past, which seems to go against our memories and experi-
ence. And although we can design low entropy states in the lab, why was
the entropy of the universe low to begin with?

Notwithstanding these shortcomings which were discussed extensively
in previous chapters, Boltzmann’s entropy is a better starting point for a
reduction project than Gibbs’, simply because (1) it is defined as a function
of individual systems and these are what we usually observe,46 (2) it has
almost all the properties of TD entropy, and (3) it behaves correctly.

Among its three merits, (1) is the most important since it ties Boltz-
mann’s entropy to the underlying dynamics and this immediately leads to
(3). The price, as is well known, is the ‘almost ’ in (2): the second law be-
comes a statistical law, in the spirit of Maxwell’s (1995, 583) famous remark:

The second law has the same degree of truth as the statement
that if you throw a thumbful of water into the sea you cannot
get the same thumbful of water out again.

Callender (ibid., 371), however, adds another feature: (4) Boltzmann’s
entropy can be extended to the quantum regime since the volume of a
macrostate in phase space has a natural quantum analogue, namely, the
dimension of the projector on the macrostate in Hilbert space. Yet this fea-
ture is not unique to Boltzmann’s entropy since Gibbs’ fine-grained entropy
has similar analogues. We move, then, to the quantum regime to meet these
counterparts.

46The term ‘objective’ is deliberately omitted here since although the number of mi-
crostates corresponding to a macrostate is an objective matter, there still exists a kind of
coarse-graining in Boltzmann’s definition, apart from the fact that if Boltzmann were to
pick the velocity-position space instead of the momenta-position space his entropy defini-
tion would not have worked. It is noteworthy that Callender (ibid.) who attacks Gibbs’
entropy on the basis of its subjectivity allows a fair amount of physically justified choice
of description when his pet entropy is concerned.
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7.3 Entropy in the Quantum World

7.3.1 Von Neumann’s Entropy

In his famous treaties on QM von Neumann introduces his concept of quan-
tum entropy:47

SV N = −K Trρ ln ρ , (7.14)

and justifies his definition on a thermodynamical basis. Contrary to Gibbs’
who was cautious to identify his concept of entropy with the thermodynam-
ical concept and referred to it only as an “analogue’, von Neumann and
many other authorities in QM take SV N to be identical with TD entropy.48

Von Neumann’s quantum mechanical formalism guarantees that during
a measurement SV N increases.49 This feature, however, does not in itself
assure us that SV N is indeed TD entropy or that entropy increases dur-
ing a measurement. In order to establish that von Neumann proposes a
thought experiment which heuristically equates mixed states with chemical
mixtures.50 This experiment leads to an arithmetical argument intended to
prove that the decrease in thermodynamical entropy is compensated by an
increase in SV N .

Additional formal features of SV N are supposed to support von Neu-
mann’s claim. Thus, for example, SV N is concave and additive.51 Further-
more, Peres (ibid., 268) mentions its tendency towards equilibrium.52 An-
other favourable feature is that SV N formally resembles Shannon’s (1948)
famous concept of entropy in communication theory:

I = −K
N∑

n=1

pn ln pn. (7.15)

47Where K is Boltzmann’s constant and ρ the density matrix of the system. Von
Neumann (1932/1955, ch. 5) extends an earlier work of his from 1927.

48See, e.g., Peres (1993, 270) who claims that SV N

...is genuine entropy, fully equivalent to that of standard thermodynamics.

49In the ideal case of a pure state represented as an ensemble of identical systems,
the initial SV N is zero (since by definition for a pure state ρ2 = ρ). Measuring another
operator we transform the ensemble into a mixture in which ρ2 6= ρ and SV N > 0.

50Von Neumann (ibid., 360–379). See also Peres (1993, 260–275); Shenker (1999, 36–40);
and Petz (2000, 85–90).

51Wherl (1978, 237–239; 241).
52Notwithstanding its TRI evolution which Peres, interestingly, regards as

advantageous.
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Under the interpretation of pn as the probability of obtaining outcome
n in a spectrum of a magnitude we intend to measure, I characterizes the
probability distribution {p1, . . . , pN} and can be interpreted as measuring
our ignorance of the future outcome.53 But as Shenker (ibid., 41–42) warns
us, the quantity in (7.15) is not unique and depends on the initial state and
the choice of magnitude to be measured. Uniqueness can be obtained by
choosing the lowest value I can assume for any complete measurement. In
this special case the magnitude which minimizes I is the density matrix ρ.
Thus, in this case, and only in this case, I = SV N . Now, since entropy in
classical SM is also defined as a function of a probability distribution and
can be interpreted as a measure of ignorance, the formal similarity and the
linkage to SM entropy are regarded as yet another support to the equivalence
between SV N and TD entropy.54

Clearly this chain of reasoning is non-trivial at best. Yet it is threat-
ened to fall apart as soon as Shenker (ibid., 42–46) and Shenker and Hemmo
(2003) convincingly demonstrate that von Neumann’s argument – the only
argument in the literature so far which is supposed to prove the equiva-
lence between SV N and TD entropy – is inconsistent. Furthermore, since
von Neumann’s proposal is based on a process which dissipationlessly trans-
forms mixed states into pure ones and during which SV N decreases with no
compensation on the TD entropy side, it follows that were SV N on a par
with TD entropy then von Neumann’s thought experiment itself would have
been a huge perpetuum mobile machine of the second kind.55

The moral I wish to draw here is that the hastiness in identifying entropy
and information is premature and even dangerous. It was Landauer (1961)
who coined the much abused phrase ‘Information is Physical’ by relating
thermodynamic irreversibility with the erasure of information from a mem-
ory device. Yet there exists a wide gap between the fact that the hard-disk
in my desktop computer needs ventilation to statements such as ‘Informa-
tion is the currency of nature’.56 First, as Bar Hillel (1955) already points
out, the concept of semantic information has intrinsically nothing to do with

53Von Neumann himself does not discuss this interpretation, which is clarified , e.g., in
Peres (ibid., 260–264).

54Note that such inference presupposes that in classical SM there exists a valid coun-
terpart to TD entropy.

55Shenker illustrates the reductio ad absurdum of von Neumann’s argument by calcu-
lating the work that such machine could have preformed: in room temperature it would
have lifted 176 Kilograms by 1 meter!

56Lloyd (1989, 193).
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communication or information theory. Second, if Shenker’s argument tells
us something it is surely that:

It is both useful and legitimate to use SV N as a quantification of
the amount of information one has regarding the system’s state
and the possibility of predicting results of future measurements.
... However, information and entropy are not synonymous: the
present paper demonstrates that one can change while the other
remains constant.57

Maintaining a clear conceptual distinction between TD entropy and
information-theoretic uncertainty is, of course, consistent with acknowledg-
ing that the price for acquiring information is always an increase of entropy.58

Setting aside these intriguing conceptual issues, for our purpose the forego-
ing is sufficient to establish that until there appears in the literature another
argument in support and contrary to repeated claims,59 von Neumann’s en-
tropy cannot be regarded as a counterpart to TD entropy. The question
whether QM can produce a counterpart to entropy in SM is discussed be-
low, but it is already clear that even if it could, the transition from QM to
TD is not as straightforward as von Neumann and his followers assume.60

If our goal is to find a quantum analogue to this entropy we should either
justify von Neumann’s claim or, again, look elsewhere.

7.3.2 Wigner’s Function

It is well known that the uncertainty principle makes the concept of phase
space in quantum mechanics problematic. Since a particle cannot simulta-
neously have a well defined position and momentum, one cannot define a
true phase space probability distribution for a quantum mechanical system.
Nonetheless, functions which bear some resemblance to (classical) phase

57Shenker (ibid., final footnote).
58See, however, Shenker (2002) for yet another convincing argument, this time a devas-

tating criticism of Landauer’s principle.
59E.g., Peres (1989; 1993).
60Note how inconvenient Shekner’s result is for generations of physicists who used to

obtain a SFG as a function of a classical probability distribution from SV N just by replacing
the density matrix with the phase space probability distribution and the trace with the
integral in phase space. Let me restate my claim: no matter how consistent this move is
– both expressions are conserved by the Liouville flow and SFG can take negative values
only when the uncertainty principle is violated (see next section) the claim that SV N is
the entropy of thermodynamics remains unjustified.
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space distribution functions have proven to be of great use in the study of
QM systems. Apart from the calculational advantage these function also
shed light on the connections between classical and quantum mechanics
since modulo a certain difficulty they allow to express QM averages in a
form which is very similar to that for classical averages.

Before we spell out this difficulty let us note that the use of the ‘quasi-
probability-distribution’ functions was originally formed by Wigner (and
refined by Husimi and Moyal) as an alternative representation of a quantum
mechanical state.61 In particular, in can serve as an equivalent substitute
for the usual density matrix formulation.62 Consequently, nothing new is
gained here in terms of bridging the gap between von Neumann’s entropy
and TD entropy. The following, however, allows us to pin point yet another
problem with quantum entropy: its relation to entropy in SM.

Wigner’s representation is a useful tool to express quantum mechanics in
phase space formalism. In this representation, a quantum state is described
by a Wigner function (i.e. a function of the phase space variables q and p),
and Wigner’s equation provides an evolution equation for the state which is
equivalent to the quantum Liouville equation.63 Wigner’s function W (q, p)
is defined in terms of the density matrix ρ̂ for a quantum mixed state

W (q, p) =
1

πh̄

∫ +∞

−∞
dy〈q − y|ρ̂|q + y〉 eipy/h̄, (7.17)

or in terms of the wave function ψ(q) for a pure state

W (q, p) =
1

πh̄

∫ +∞

−∞
dy ψ∗(q + y) ψ(q − y) eipy/h̄, (7.18)

and possesses many of the properties of a phase space probability distribu-
tion: it is real, normalized to unity, and, when integrated over q or p, gives
the correct marginal distribution, e.g.

∫
Wdp = 〈q|ρ̂|q〉 = spatial density.

61Wigner (1932) and Wigner et. al. (1984). That this alternative is rarely mentioned
or used in QM textbooks is a result of the complexity involved in the representation of,
e.g., the eigenstate-eigenvalue link. See Wigner et. al. (ibid., 132).

62Wigner’s function is actually a Fourier transform along the antidiagonals of ρ, and
since this transform is invertible, ρ is recoverable from W .

63The latter reads:

ih̄
∂ρ

∂t
= Hρ− ρH . (7.16)

where ρ is the density matrix and H the Hamiltonian.
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Furthermore, it can be used to compute averages of any dynamical variable
A(q, p) : 〈A〉 =

∫
WA dqdp.64

Despite these good properties, Wigner’s function cannot be straightfor-
wardly interpreted as a probability distribution since for certain regions in
phase space it can assume negative values! This is not surprising since the
uncertainty principle forbids a complete joint localization in position and
momentum. If, however, one is interested, as we are, in approximate joint
measurements of p and q one can ‘blur’ Wigner’s function over phase space
regions of volume ∼ h̄n and in so doing one obtains a probability distribution
of that approximate state.65

In this case the equation of motion for Wigner’s function is given by
Moyal’s bracket:

{H, W}mb = −i sin(ih̄{H,W}pb)/h̄ (7.19)

where {H, W}pb is the Poisson bracket describing the classical evolution
(Liouville flow) of Wigner function W , and H is the Hamiltonian.66 With
this equation of motion it becomes almost possible to interpret the motion
of quantum states as following quasi-classical trajectories on phase space.

Why ‘almost’? Because the ‘blurring’ of W is still not sufficient to
ensure a straightforward interpretation of W (or ρ) as a classical probability
distribution since the state we wish to consider might be an entangled state.
In other words, ρ might contain interference terms and if we wish to interpret
it as a probability distribution we must first eliminate these. In other words,
we must first solve the measurement problem!

We have arrived to the first positive result so far. A solution to the
measurement problem would eliminate the interference terms in ρ either
by a physical collapse (in the GRW framework) or by an apparent collapse
(in the no-collapse theories powered by decoherence) hence would allow us
to make progress in the attempts to define a quantum counterpart to SM
entropy. In the Gibbsian case what necessitates this is the need for a (quasi-
classical) probability distribution on phase space; In the Boltzmannian case

64Note however that, since some terms in A(q, p) may not commute, it is necessary
to establish a non-ambiguous correspondence between classical variables and quantum
operators. This is known as Weyl’s rule. See Wigner et. al. (ibid., 132).

65See Wallace (2001) and references therein.
66See Appendix B.
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– it is the need to ensure that the system is in a given macrostate.67 In both
frameworks one must diagonalize ρ in order to make sense of the quantum
probabilities and a fortiori of the transition from QM to SM.68

As mentioned in chapter six (section 6.3) the case of quantum chaos
and celestial mechanics has recently provided a playground for the GRW
and the decoherence approaches to demonstrate their ability in generating
quasi-classical trajectories in phase space.69 Remarkably, when a system is
open to interaction with its environment decoherence ensures that the rate of
von Neumann’s entropy production approximates the rate of the dynamical
entropy production (the customary ‘currency’ in classical chaos).

Even more remarkable is the fact that this move has also contributed
to the evaporation of some of the generic problems of classical SM, e.g.,
the measure-zero problem. Recall that in classical SM under the standard
measure on phase space many results hold except for a measure-zero subset
of phase space points.70 How can we assign zero probability to these points
when other measures assign them non-zero measures? 71 Sklar would have
nothing to worry about in the case of QM: the measure-zero subset has no
analogue in Wigner’s representation since every state occupies a phase space
region with nonzero standard measure and individual points have no physical
meaning. Thus, contrary to classical SM, any dynamical result applying to
a nonzero measure region on phase space will apply to all states. This,
moreover, is not mere artefact of Wigner’s representation. In QM in general
– and thus in the actual world – there is no sense in localizing phase space

67As Hemmo and Shenker (2003) remind us, “in the Boltzmann framework it is part
of the parcel that the system actually be in a given microstate and a fortiori in a given
macrostate.”

68Note that without such solution even von Neumann’s entropy itself can be given
neither a Gibbsian interpretation nor a Boltzmannian one, the latter being a division of
the diagonal elements of ρ into sets corresponding to different macrostates. See Hemmo
and Shenker (ibid.)

69Agreed, the models presented by Zurek (1998) and Vitali and Grigolini (1998) are
nothing but toy models but they are quite sufficient as a possibility proof. In particular,
they exemplify the closed/open system dichotomy and its role in recovering CM from QM.

70Sklar (1993, 182–188) is a long cry of despair of this problem.
71Recall that our choice of a measure is usually made on grounds of convenience. Given

a probability distribution we can represent it by any measure since if the probability of
finding a system in a region R in phase space is given by

∫
R fdµ where f is a proba-

bility distribution and µ a measure, any modifications of µ can be compensated for by
modifications of f . See Wallce (2001, sec. 3.3).
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points on such a small scale.72

7.3.3 Another, (Shorter), Bookkeeping

Let us summarize the results so far. Contrary to what distinguished physi-
cists claim, in QM there still exists no justified direct counterpart for TD
entropy. In the case of SM entropies, however, the situation is more in-
volved. Here the possibility of generating such counterpart is mediated by
a necessary solution to the measurement problem. Once this solution is es-
tablished, however, it opens the way to counterparts for either Boltzmann’s
entropy or Gibbs’ fine-grained entropy.

In the first case, one can construct an analogue for the concept of phase
space volume associated with a given macrostate (1) directly, as Calleneder
(ibid., 371) suggests, with the notion of the dimension of the projector on the
macrostate in Hilbert space, or (2) indirectly with the notion of the classical
phase space volume generated by the microstates that are compatible with
the macrostates. In the second case a function of a probability distribution
can be constructed either with von Neumann’s entropy or with Wigner’s
function. Note, moreover, that a solution of the measurement problem also
frees these functions from the restrictions of Liouville’s theorem since in the
decoherence approach (when accompanied by no-collapse interpretations)
the dynamics are effectively non-linear. The question remains whether the
novel dynamics can connect two Gibbs’ entropies in two equilibrium states.

Finally, if one believes that SM entropies such as Boltzmann’s entropy or
the dynamically-free improved Gibbs’ fine-grained entropy are valid coun-
terparts to TD entropy as defined by Clausius, one can proudly claim that
QM offers an indirect counterpart to TD entropy which is additive, concave,
extensive, and even non-decrease.

7.4 Taking Sides?

Our goal was to investigate the inventory of entropies in the domains of TD,
SM, and QM. We saw that TD entropy is a well-defined concept. Problems
start when one wishes to construct a mechanical analogue to this concept.
The underlying dynamical laws then constrain one to introduce probabilistic
assumptions with respect to the initial conditions which accompany the laws

72Wallace (ibid.).
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since SM entropy, if defined for an individual system, cannot increase either
for all initial states (the reversibility objection) or for all times (the recur-
rence objection). Ways about this problem, such as Gibbs’ coarse graining,
were examined and found wanting. We thus remained with two SM candi-
dates for entropy: Boltzmann’s entropy SB, and Gibbs’ fine-grained entropy
SFG, which notwithstanding their partial agreement are founded on quite
distinct conceptual grounds. In the classical realm, moreover, the former is
more appealing since it is defined for an individual system and it behaves
(almost always) correctly while the latter – defined as it is for a fictitious
ensemble of systems – is frozen and the attempts to unfreeze it are foreign
to the original goal of constructing a mechanical model to TD entropy based
on Hamiltonian dynamics.

When we moved to the quantum regime we saw that there still exists
no justified direct counterpart to TD entropy. What QM could offer were
indirect counterparts to SB and SFG. Such offer, however, came with a
price: we first had to solve the measurement problem. In doing so we dis-
covered that the effort was worth our while since (1) some generic problems
of classical SM such as the measure-zero problem evaporated; (2) SFG was
finally unfrozen; and (3) as we are about to discover, the original goal of
constructing a purely mechanical model for TD entropy, free form external
non-dynamical probabilistic assumptions can be fulfilled.

Well, we have certainly narrowed the possibilities as we now have to
choose between collapse and decoherence, that is, between the GRW theory
and open system approach; between chance and ignorance.73

The GRW approach to the measurement problem – regarding as it is
the wave function as representing an individual system – aims to recover
Boltzmann’s concepts of entropy and equilibrium. If Albert’s (1994; 2001)
dynamical hypothesis is correct, then the GRW jumps – the chancy prob-
abilities for the collapse transition – reproduce the probabilities of the clas-
sical trajectories on phase space calculated form the standard statistical
mechanical measure for any given macrostate of the system.74 As we have
seen in section 7.2.4, this measure implies in turn that a thermodynamical
normal behaviour is a stable property, that is, that an equilibrium state

73Note that the kind of ignorance introduced by the open system approach is completely
orthogonal to the ignorance Gibbs’ coarse graining method is usually accused of. In this
case the ignorance is a natural, even physical, result of the dynamics of a physical system
and has nothing to do with contextual measurement resolutions.

74Hemmo and Shenker (2001; 2003).
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is overwhelmingly more probable than non-equilibrium state and that the
transition from the latter to the former is a transition from an improbable
state to a probable one.

Contrary to classical SM, in order to reproduce the Boltzmannian ac-
count the GRW theory need not refer to an a priori postulate of equiproba-
blity or to any other postulate regarding a probability distribution on initial
states. Since the transition probabilities of the GRW are genuinely stochas-
tic, whether Albert’s dynamical hypothesis is true or not, and a fortiori
whether the standard measure of classical SM is the correct measure or not,
becomes an empirical issue with no recourse whatsoever to initial states or
probability distributions thereof.

In the decoherence approach, on the other hand, one regards the quan-
tum state as representing an ensemble, and not an individual system, hence
the Gibbsian framework is the appropriate SM reference. First one interprets
ρ as a mixture and W as probability distribution. Second, one uses Gibbs’
concept of fine-grained equilibrium as a stationary probability distribution
over phase space towards which W approaches.75

In chapter five (sections 5.4 and 5.5) we discussed the conceptual dif-
ficulties that the quantum decoherence approach faces in general and in
particular in the context of reproducing thermodynamic phenomena. In
this chapter we spelled out some of the technical facets of these difficulties,
namely, the problematic interpretations of ρ or W as probability distri-
butions. But once we supplement quantum decoherence with no-collapse
interpretations of QM the extra dynamical laws of these interpretations al-
low us to interpret the reduced state as a probability distribution over the
components of the wave function and to regard it as an ‘effective’ state of
the system.

Hemmo and Shenker (ibid.) propose to apply decoherence (powered
by no-collapse interpretations) also in the Boltzmannian context. In doing
so they suggest that the open system approach reproduces Boltzmann’s
concepts of entropy and equilibrium to the extent the GRW theory does.

Their idea is that once macroscopic superpositions are suppressed by
75Recall that in the quantum chaos models of celestial mechanics the interactions with

the environment unfreeze the dynamics and allows W to spread in phase space, and, as
a result to increase the otherwise conserved entropy of von Neumann in a rate which re-
markably approximate the increase rate of dynamical entropy for classical chaotic systems.
See Zurek and Paz (1994); Zurek (ibid.).
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decoherence and an effective reduced state is ensured, the coherent states
(which – entangled least as they are – represent the most stable states under
the time evolution when the latter includes the decoherence interaction)
ensure that the interference terms in ρ wash out and re-interfere only when
the wave function spread in position becomes larger then the coherence
length, a point in which decoherence operates again.

The result is that in successive times along the time-evolution of the
system the coherent states diagonalize ρ. Now, if the dynamics of the certain
no-collapse interpretation we apply are such that the transition probabilities
between two successive effective states are stochastic, that is, if the two-times
correlation is not 1−1, then given a dynamical hypothesis similar to that of
Albert, these transition probabilities play exactly the same role played by
the GRW jumps.76

Setting aside the deep conceptual consequence of this proposal, i.e., the
unavoidable dichotomy between reality and appearance and the choice of
the latter as the subject matter of our most fundamental theory,77 until
now only modal interpretations among the no-collapse theories demonstrate
genuine stochastic transition probabilities which given the interaction with
the environment, are independent of the total evolution of the system.78 In
the many worlds interpretation the status of the transition probabilities is
still under dispute, and in Bohmian mechanics the transition probabilities
are not genuinely stochastic since the trajectory of the quantum system
depends on the (deterministic) dynamics and on the initial conditions. The
recovery of thermodynamics with Bohmain mechanics is thus very similar
to classical SM.79

Of course, since all no-collapse theories are TRI the ultimate reason for
76Hemmo and Shenker (ibid.) regard the remarkable results of Zurek and co. in quantum

chaos as supporting their dynamical hypothesis, yet one should recall that the quantum
chaos results are given in the Gibbsian framework, and although the concepts of entropy
in Boltzmann and in Gibbs approaches are usually regarded as yielding similar results in
equilibrium, they are quite distinct. One relevant difference is that in the Boltzmannian
account individual systems fluctuate away from equilibrium while in the Gibbsian account
they fluctuate in equilibrium and the latter is stable over time. Furthermore, For Zurek’s
results to give support to their dynamical hypothesis Hemmo and Shenker must assume
that von Neumann’s entropy is TD entropy, and as we have seen, this is questionable.

77See chapter five (section 5.5).
78Bacciagalupi and Dickson (1999). Note that the ‘openness’ of the system to an inter-

action with the environment is crucial to this independence.
79No wonder that many hard headed Bohmians are also Boltzmannians. . .
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the approach to equilibrium lies in the initial conditions, yet these are now
dynamical rather than thermodynamical, that is, they are the conditions
for decoherence to occur. Once these are granted and once the system is
open, its thermodynamic behaviour may be recovered. Yet contrary to the
GRW theory where the total evolution of the wave function is non TRI, in
the open system approach if the evolution of the total wave function is such
that recoherence should occur, it would occur regardless of the stochastic
character of the transition probabilities. To the attentive reader this comes
as no surprise: chance and asymmetries in time, as we have argued in chapter
four, are independent issues, and only an inquiry into the foundations of
physics can bring them together or keep them far a part.

Can we take sides and end this chapter with yet another heretic move
in the foundations of SM?80 Not yet. But we have demonstrated that the
notions of chance and ignorance are on a par again, and the metaphysical dif-
ferences between them are waiting to be turned experimental.81 Until then,
both contribute to the foundations of SM. The analysis of their connection
with TD, however, is still missing. This task is undertaken next.

80No offence, but the tradition of describing all the possible solutions to a certain prob-
lem in the foundations of SM and then leaving matters undecided is known in the corridors
of philosophy departments as “Sklarism”.

81The term ‘experimental metaphysics’ was coined by Abner Shimony when J.S. Bell
formulated his famous inequality and paved the road to Aspect’s experiment and the
analysis of EPR paradox. In our case, two possible experiments involving spin echoes and
light gases are discussed in Albert (2001) and in Hemmo and Shenker (ibid.).
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