Jill North

Understanding Probabilities in Statistical Mechanics


A key ingredient in explanations of the temporal asymmetry of thermodynamics, and of thermodynamic phenomena more generally, is the uniform probability distribution that is placed over the microstates compatible with the initial macrostate of a given system.  (Or, in order to account for thermodynamics throughout the entire history of the universe, the uniform distribution that is placed over the initial low-entropy condition of the universe.  See Albert (2000).)  One point in a 6N-dimensional phase space represents the microcondition of a (classical) N-particle system. (A microcondition is an exact specification of the state of the system in terms of the positions and velocities of each of its particles.)  Since many different microstates can realize the same macrostate, the system’s macrocondition (specified by its macroscopic features such as temperature, pressure, and volume) corresponds to a region of phase space, each point of which picks out a microcondition compatible with its being in that macrocondition. The standard measure used in statistical mechanics says that the size of a set of microconditions corresponding to a given macrocondition is given by the (standardly-calculated) volume of the region of phase space that the macrocondition occupies.
  This measure then amounts to a uniform probability distribution that assigns equal probability to each microcondition that a system in a given macrocondition could be in.  This is the standard (natural, microcanonical) measure, and it is essential to predicting the macroscopic, thermodynamic behavior we observe.  

Yet a probability distribution over initial conditions—especially over the initial condition of the universe—is puzzling.  It does not, for example, seem to express the frequency with which certain outcomes occur, since it does not seem to make sense to talk of the frequency with which initial conditions—at least initial conditions of the universe—occur.  Further, this distribution is strikingly natural: it is uniform over phase-space volume.  Why does such a ‘nice’ distribution work so well?  Finally, since the set of microconditions corresponding to any given macrocondition is countably infinite, there are a number of measures we could consider using.  These considerations have led physicists and philosophers to question why this particular measure works so well in statistical mechanics.  Sklar, in a recent talk (2002), claimed that the question of the status of the initial probability assumption—in particular, the question of why it works—is one of the two main foundational issues in statistical mechanics.  (The other being to account for the temporal asymmetry of thermodynamics.)  I want to consider this question of the status of the statistical-mechanical probability distribution—what David Albert (2000) calls the Statistical Postulate
—and more generally of how we ought to understand probabilities in statistical mechanics.    

There are three questions about the uniform distribution that arise when considering its status.  First, there is the question of its justification: why employ this particular measure?  What justifies assuming this probability distribution rather than some other one?  Second is the question of its explanation: what feature of the world accounts for its success?  Finally, one wonders about the nature of the probabilities it posits: are they epistemic?  Do they represent a more objective feature of the world?  What in the world is the probabilistic posit describing? 

There are four main views that answer these questions.  The first and most prevalent regards the statistical-mechanical probabilities as entirely epistemic, representing our ignorance of the precise microstates of systems.  A second view suggests that the statistical-mechanical probabilities arise from the fundamental dynamics of the world.  A third approach maintains that these probabilities are wholly empirical, having something to do with the actual distribution of microstates.  Finally, there is a view that lies in between the first and the third, which claims the probabilities of the uniform distribution are wholly empirical, but that this distribution is justified by symmetry considerations rather than direct confirmation of its statistical predictions.  I will be arguing for the third view, primarily contrasting it with the first.  I hope to show that the justification for employing the standard measure in statistical mechanics reveals that this is the best understanding of the probabilities it posits.  What is more, according to this understanding of the distribution over initial conditions, it is misguided to demand a further explanation of its holding. 

It seems fairly easy to dismiss the epistemic conception of the statistical-mechanical probabilities, despite the fact that this is the predominant view held by physicists, and by some philosophers as well.  According to this view, the justification for placing the uniform distribution over a system’s phase space is that we do not know which microcondition the system happens to be in.  Therefore, since there is no reason for the system to be any particular microstate rather than any other, we ought to assign equal probability to each microstate that is compatible with its macroscopic features.  Huw Price, among philosophers, has expressed such a view (1996; 2002).  Among physicists, Richard Tolman writes that we have “no justification for proceeding in any manner other than that of assigning equal probabilities for a system to be in different equal regions of the phase space that correspond…with what knowledge we do have as to the actual state of the system” (1979, 61).  Jean Bricmont similarly writes:

[S]ymmetry considerations show that the uniform measure is the most natural one and, since [this] distribution is the empirical distribution corresponding to most phase points (relative to that measure), it is exactly what we would expect if we know nothing more about the system.  In fact, the only thing that would lead us not to predict [this] distribution would be some additional knowledge about the system (1996, 9).

Sheldon Goldstein expresses a similar view when he claims that “it is essential that the measure of typicality be natural and not contrived…And for classical mechanics, for which symplectic or canonical structure plays a crucial role in the dynamics, the most natural measure is the volume measure defined by the symplectic coordinates” (2001, 15; see his 1992 paper with Dürr and Zanghi for a similar view in the context of Bohmian mechanics).
 

There are two main, and to my mind fatal, problems with the epistemic view.  The first stems from the role the uniform probability distribution plays in explanations of thermodynamic phenomena.  Consider the explanation of an ice cube’s melting towards the future.  If we take an epistemic view of the uniform distribution that is placed over its current macrostate, then part of the reason for the ice’s melting will be our ignorance of its initial microstate.  On the assumption that explanations of physical phenomena ought to be objective—and in any case not rely on our epistemic state—we should not maintain that part of the explanation that entropy increases (that ice melts, that coffee cools, that gases expand) is the extent of our knowledge.  How could our epistemic state have anything to do with the ice cube’s melting?  This would be like saying that if we happened to be the kinds of beings who did have epistemic access to the initial microstate of the ice cube, then it might have behaved differently.  It is also a consequence of this view that no matter what kind of world we live in, we must assume that the ice is most likely to melt towards the future.  All of that seems crazy: we are after an objective, scientific explanation of thermodynamics.

There is a second reason for rejecting the epistemic conception of the statistical-mechanical probabilities.  On the epistemic view, the reason we assume a uniform distribution over microconditions is that we do not know which microstate actually obtains and, all things being equal, we ought to assign equal probability to each possible microstate.  And in such cases all things are equal since we have no information about the system other than its macroscopic features.  On this approach, therefore, the justification for employing this measure is a principle of indifference which says that equipossible cases must have the same probability, where equipossibility is determined by means of symmetry considerations based on our epistemic situation.  But the principle of indifference cannot be used to determine the probabilities of empirical outcomes in this way, as is well known.  Since it assigns different probabilities to outcomes depending on the parameters with which we describe a situation, it cannot be used in such a way as to avoid arbitrariness or contradiction in assigning probabilities to empirical phenomena.  Furthermore, it is entirely contingent whether the probabilities we assign on the basis of a priori symmetry considerations will match the actual frequencies with which empirical outcomes occur.  It is true that the uniform distribution strikes us as remarkably simple or natural; we might suspect that these features are what justify it, as Goldstein, Bricmont and others seem to do.  But there simply is no reason that the frequencies of outcomes in nature must respect probability distributions that strike us as particularly ‘natural’.  As van Fraassen has put it, “there is no a priori reason why all [natural] phenomena should fit models with such ‘nice’ properties only” (1989, 317).  Indeed, that would amount to treating the empirical statistics as a priori, for this reasoning assumes the uniform distribution must always hold.  Some explicitly draw this conclusion, as when Sklar calls it the “a priori postulate of uniform probability relative to the q-p volume on phase space” (2002), and Tolman “the fundamental hypothesis of equal a priori probabilities in the phase space” (1979, 59).  Clearly, those who justify this distribution on the basis of a principle of indifference are emphasizing its naturalness and symmetry.  But this cannot be the reason for employing a probability distribution in our scientific theory.  

Then why do we use the uniform distribution over microstates?  There is, after all, no unique way of placing measures on continuously infinite sets like the set of microconditions compatible with a given macrocondition.  Since there are continuously infinite such microstates, there are many ways of assigning equal probability to each possibility.  So what justifies our use of the uniform distribution, if not for its seeming naturalness or simplicity?  The answer is that we have empirical confirmation of this distribution.  The uniform probability distribution, when placed over the initial phase space of a given macrocondition, is the one that yields the right empirical predictions, predictions of the thermodynamic behavior we do, in fact, observe.  So it is an empirical fact about the way our world happens to be.  Indeed, it must be empirically confirmed in order for us to be justified in imposing it on a system’s phase space, given the infinity of alternatives.  The reason we place this distribution over the phase space of a given thermodynamic system is, then, wholly empirical: the use of this distribution rather than any other is its empirical justification/confirmation.  It is true that this distribution is surprisingly natural, being a uniform distribution that assigns equal probability to all possible microstates.  But this cannot be what justifies its use.  It just so happens that one of the infinitely many ways of assigning sizes to measures, the one where the size of a set of microconditions is determined by the standardly-calculated volume of the region of phase space they occupy, yields the right empirical predictions.  This empirical confirmation is then what justifies our using this measure.  So that the uniform distribution is a contingent, empirical fact that happens to yield the right predictions about our world; its probabilities are neither epistemic nor a priori. 

The fact that this distribution is empirically justified indicates the way in which we ought to understand its probabilities.  This distribution, when placed over the possible microconditions corresponding to a given macrocondition, yields (the statistics of) our thermodynamic experience.  This suggests that the uniform measure is an empirical fact about the way our world happens to be, i.e., that it corresponds to the way in which the microconditions of thermodynamic systems are distributed in nature.  Note that regarding the uniform distribution as an empirical claim about the distribution of microstates of thermodynamic systems in our world suggests that it is wrongheaded to ask for a deeper explanation of its holding.  In describing the distribution of microconditions in nature, it seems wrongheaded to ask why this distribution rather than any other.  This is especially true given that the distribution is taken over initial conditions (either of the universe as a whole or of individual sub-systems).  For it is reasonable to hold (as Callender (2003) argues) that initial conditions are not the kinds of things that require explanation.  

Thus, the uniform probability distribution is an empirically successful posit in our theory.  It is best viewed as a basic postulate of our theory, and therefore a statement that requires no deeper explanation.  For once we take the probability distribution over initial conditions as having something to do with the way our world happens to be, the whole question of explaining it seems a non-starter.  There is in a certain kind of explanation—only not the kind that Sklar seems to be after (in e.g. his (1993)).  In response to the question: why does this particular distribution work so well?  The answer is simply: because it corresponds to the frequency with which the microconditions of thermodynamic systems occur in nature.  Explanations must stop somewhere, and in this case, this is where they (properly) stop: at a claim about the way our world happens to be.  

I have treated the uniform distribution as a fundamental postulate that must be made of our world given its empirical success in predicting such a wide range of phenomena.  Some might take this as reason to consider it a law.  I don’t think that what I say about the status of the probabilities it posits hinges on any particular view of laws.  But there are reasons, as Barry Loewer (2001) argues, to view it as a law if we hold a Ramsey-Lewis conception.  On this view, the Statistical Postulate would seem to come out as the best—the simplest, most informative, and true—summary of information about the distribution of the microconditions of thermodynamic systems.  Sklar disagrees, on the grounds that: 

Such posits do not seem to fit our usual standards for ‘laws of nature’, general principles that delimit the realm of what is and what is not ‘physically necessary’. But, on the other hand, they do not seem to be mere grand generalities about purely contingent initial conditions either. Rather they hover in a kind of indeterminate status (2000, 739).

Yet Sklar seems to assume that all laws are dynamical, in which case the Statistical Postulate obviously would not be a law.  It is unclear to me that there is any principled reason to reject non-dynamical laws (though we do have a clear preference for them).  In any case, whether or not we wish to consider it a law, it does seem to be a basic postulate of the theory.

Another approach (suggested to me by Tim Maudlin) still holds that the probabilities of the Statistical Postulate are empirical, not epistemic or a priori.  As opposed to my view, however, this view claims the distribution need not be verified directly by its statistical predictions.  Rather, the justification for our placing this measure on a system’s phase space comes from certain symmetries, such as those in space itself.  The suggestion is that if space has these kinds of symmetries, then it is reasonable to posit a distribution over initial conditions that respects these symmetries.  And these kinds of symmetries would be evidenced by the microdynamics, without resorting to the kind of direct empirical confirmation I discuss above.  In an e-mail, Maudlin explains the view as follows: 

There are certain e.g. symmetries to space itself (this is not, of course, a priori) and one might reasonably expect, or employ, a distribution over initial states that respects those symmetries.  Since the symmetry of space can be verified by the microdynamics, without regard to statistics, this looks like a sort of (empirical) input that is still distinct from checking the distribution directly.

Maudlin seems to be advocating a middle ground that, on the one hand, does not treat the statistical-mechanical probabilities as justified a priori, but, on the other, is not entirely empiricist, since it justifies the probabilities by means other than direct empirical confirmation.  What is more, on this approach there would be the kind of explanation of the uniform distribution that Sklar and others seek: the physical symmetries in the spacetime structure of our world would be the feature of the world that accounts for the success of the Statistical Postulate.

It remains unclear to me, however, that this view can avoid collapsing into one relying on a principle of indifference that treats the probabilities as epistemic and a priori in a way that Maudlin wants to avoid.  It is true that the justification for the uniform distribution stems from empirical symmetries.  But the link between space-time symmetries and our using this particular distribution remains unclear—unless, it seems, one assumes a principle of indifference. 

There is one more possibility.  Those who seek an explanation for the success of the standard measure in statistical mechanics seem to most want a dynamical explanation.  David Albert (2000) has made such a proposal.  He argues that, if GRW turns out to be the correct theory of quantum mechanics, then its statistics would yield the statistical-mechanical probabilities.  His suggestion is that the quantum-mechanical probabilities of the dynamics of the collapse of the wave function might just be the statistical-mechanical probabilities.  So that if GRW is the true theory of our world, there would be no need for a probability measure over initial conditions; the fundamental dynamics would ground statistical mechanics.  And although this would eliminate the need for a Statistical Postulate, it does in a sense explain it: on this theory, our experience would appear confirmatory of such a postulate because of the stochastics of the fundamental dynamics.  This proposal would therefore explain the standard measure’s success without recourse to an epistemic conception of the probabilities based on a principle of indifference.  

A GRW-based statistical mechanics would thus be the best, or most satisfying, account of the statistical-mechanical probabilities.  Albert’s proposal, however, hinges on empirical evidence of the truth of the GRW theory, evidence we do not yet have.  And given the above arguments, it seems to me we need not worry about finding an alternate explanation of the Statistical Postulate should the GRW theory fail to pan out.  For then we must simply take the uniform distribution over initial conditions as a basic, not-further-explainable posit of our theory, a posit that describes the actual distribution of microconditions in nature and, therefore, accurately predicts the thermodynamic behavior of our experience.

Before concluding, let me briefly note an alternative view that begins from an entirely different approach to statistical mechanics altogether.  In a forthcoming article, Stephen Leeds takes issue with the picture of statistical mechanics that is assumed here.  For him, this is simply not the kind of theory that makes such sweeping, universal claims as a fundamental probability postulate over initial conditions.  Rather, this theory is much more limited in scope—limited to making predictions about the behavior of gases expanding, ice cubes melting, etc.  In his view, it doesn’t make sense to ask such questions as whether the probability distribution we’re using amounts to a particular kind of probability distribution, or requires further explanation, etc.:  for there simply is no such fundamental posit.  He writes: 

The microcanonical measure…has several quite distinct roles to play in the 

explanatory structure of SM.  We will want to show that the class of states [that increase in entropy] is large according to the microcanonical measure conditionalized on the initial macrostate.  But the role the microcanonical measure is playing here is quite different from the role it plays in characterizing equilibrium, or in explaining the approach to equilibrium….[I]t is a mistake to conflate the three: for example, to note, as many discussions do, that SM makes heavy use of the microcanonical distribution, call that a ‘probability’, and then go on to ask what kind of probability this might be—subjectivist, frequency, etc.  The use of the microcanonical distribution in explaining the initial state of the world is (to the extent it fits into any of these headings) subjectivist: we are showing that our world is not an atypical one when we measure typicality according to a principle of indifference—of what we find indifferent.  The use of the [microcanonical] distribution in characterizing equilibrium is perfectly ‘objective’, but it is somewhat misleading to call it a probability: it is a mathematically definable measure on phase space, and there simply are no competing theories about what it is, any more than there are frequentist or propensity accounts of Lebesgue measure.  Finally, when we say that initial states of thermodynamic systems typically are such as to go to equilibrium…the [microcanonical] distribution doesn’t enter at all: we are talking about a finite frequency…[Probabilities] have no direct role to play in explaining why ice melts (ms, 14-16).

Leeds takes a very different view of statistical mechanics.  According to him, statistical mechanics is not the kind of fundamental theory I have been assuming it to be.  At least, he believes we have no reason to treat the theory in this way on the basis of the evidence we currently have.  He maintains that our thermodynamic experience does not give us evidence for the kind of probability distribution whose status I have been discussing.  And if one takes this view, then one can take the kind of stance towards the statistical-mechanical probabilities that Leeds does, according to which the above discussion is simply misguided.  Suffice it to say that I disagree with the view of statistical mechanics that Leeds assumes, though I don’t have time to argue against it in detail here.  (He seems to focus, for example, on too limited a sampling of the empirical evidence we have for the theory.)  And once we do take the theory more seriously, then it seems to me we must take the uniform distribution over initial conditions as a basic, empirical posit of the theory.  

Sklar concludes that “the status of needed basic probabilistic posit remains enigmatic” (2002).  Against Sklar, I think that once we become clear on how we justify our use of this  probability distribution, there is a clear understanding of its status.  This probability distribution is empirically justified by our thermodynamic experience; so we ought to take it as an empirical claim about our world, as a basic postulate of our theory.  This, in turn, means we ought to consider the probabilities it posits as objective and empirical, corresponding to the actual distribution of microstates in the world.  This is then why it works so well; and we don’t need a further explanation of its success.  Indeed, that demand seems on a par with the demand for an explanation of a fundamental law or particular initial condition’s holding.  And, it seems to me, these are the kinds of things that don’t require further explanation by science.

There are large questions that remain.  Are there any kinds of constraints on initial conditions, or on physical probability distributions, or on physical symmetries more generally, that do reasonably call for further explanation?  Or are all such symmetries on a par and empirical/contingent?  Does the above view of the statistical-mechanical probabilities suggest that we ought to adopt an empiricist understanding of probability and laws of nature more generally?  These questions deserve further exploration.  But in any event, against Sklar and others, it seems to me that the status of the statistical-mechanical probability distribution is clear.
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� I focus on classical statistical mechanics. An analogous story goes for quantum statistical mechanics, with a measure taken over quantum-mechanical wave functions.


� I don’t mean to beg the question of the status of the probabilities by referring to it as the Statistical Postulate.


� There is another level at which epistemic conceptions mistakenly enter into the foundations of statistical mechanics: in the definition of entropy. Goldstein (2001) eloquently argues against this conception of entropy, but still accepts an epistemic conception of the statistical-mechanical probabilities.
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