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Defining the strength of a cause

1) What’s the problem?

It might seem that the question of causal magnitude is a pretty straightforward one: can we not just define the strength of a cause by the quantity of effect it leads to?  But it will turn out that  the full answer is not so simple.

The philosophical literature on this issue is sparse.  This may be in part because in some well-known contexts it is not obvious there is an issue at all.  Take a Newtonian particle, for example, and the question of whether its acceleration is due more to gravity or to electromagnetism.  We understand easily enough that the causal strength of gravity is given by the particle’s acceleration in the presence of gravity alone, and likewise that there is an analogous story for electromagnetism.  There seems to be no problem or ambiguity with this understanding, and moreover it is straightforward then to compare the relative strengths of the two influences.  So it is easy to see why physicists, for instance, and indeed philosophers of physics, might never have been too concerned.

Now turn to a different area of science, namely biology.  Which is the more important determinant of our scores in IQ tests, genes or environment?  This is a question that has fascinated many individuals, and unfortunately also some governments.  Belief that intelligence is ‘mainly due to genes’ has helped inspire various eugenicist programs of various degrees of attractiveness.  Even in the last decade, for instance, Singapore’s government has given strong fiscal incentives for richer rather than poorer people to have children, motivated by such claims about causal magnitudes.  Unfortunately, it becomes clear fairly quickly that weighing up the relative importance of genes and environment is a more complex matter than it was in the case of gravity and electromagnetism.  Gravity may accelerate a particle 10% more than does electromagnetism, but can we make sense of saying that genes caused a brain to become brainier 10% more than did environment?  The problem is that the impacts of genes and environment are of course hopelessly interwoven from the start, and there is none of the easy separability of the physics case.  Without environmental input from the womb onwards, even Einsteinian genes will not produce any IQ at all.  And without genes to work on, even the best nutrients and most scholarly philosophy department will be unable to produce any IQ either.  Faced with this interdependence, or more precisely that each input is individually insufficient to produce any effect, at first sight it seems difficult to disentangle any causal magnitudes at all.  And this indeed is precisely the professional consensus among biologists - to speak of genes or environment having particular causal strengths is, in this context, meaningless.  It follows that any attempt to compare their relative importance, to say which contributed more or less than the other, is also meaningless.

However, all is not completely lost.  Despite these conceptual difficulties, biologists have developed a statistical technique that does enable them to get some purchase on the issue, by defining a slightly different understanding of causal strength.  How have they managed to do this?

2) The biologists’ analysis of variance

Suppose we have a society with three families, or clans: the Browns, Jones and Smiths.  Let us simplify and assume that we have reached a brave new world of human cloning, so that three families means there are only three genotypes in the population, one corresponding to each family.  Suppose there are also exactly three environments available to children in this society, namely Bad School, Average School, and UCSD School.  Suppose next that children from each family go to each school.  Thus in this society we see a total of nine different gene-environment combinations, corresponding to each possible combination of family and school.  Suppose finally that at the end of their schooling, each child takes an IQ test, so that we can plot IQ scores against genetic and environmental inputs.  This would yield a table such as the following one:

Table 1



UCSD

Average
Bad


MA
Smith

145

115

85


115

Jones

140

110

80


110

Brown

135

105

75


105

MA

140

110

80
    grand mean: 110

(‘MA’ = marginal average.  We assume each cell in the table has equal weighting, and shall do so for all subsequent tables too.)

Some school environments achieve better results than do others; likewise so do some genes.  But which of the two influences is the more important?  Intuitively, it is easy to grasp the following argument: given any particular school, choice of genes makes only a small difference, outcomes ranging only over 10 IQ points.  By contrast, given any particular genotype, choice of environment makes a huge difference, yielding a 60-point range of IQ scores.  That is, choice of school matters much more than choice of genes.  So in this population, eugenics would be a bad way to increase IQs - much better to build good schools, since it is doing the latter that will make more difference.

This kind of argument is the essence of the biologists’ understanding of causal magnitude.  The actual formal definition borrows from the statistical technique of Analysis of Variance (’ANOVA’). [[1]]  In this case, it would proceed by calculating the variance across the different families’ marginal averages, i.e. the variance of the figures in the last column.  Similarly it would calculate the variance across the different schools’ marginal averages, that is across the figures of the last row.  It would then compare the two figures to see which accounted for a greater proportion of the total variance in the population.  In this case, more of the variance would be ‘explained’ by choice of school than choice of family, and so environment would be awarded a higher causal magnitude than genes.  For our purposes, the further mathematical details of the technique do not matter; what is important is appreciating the attractiveness of the intuition underpinning it.

Thus biologists have a way of assessing which of two (or more) inputs is responsible for more of the variation within a population.  Or alternatively put, given a range of values for each input, they have a way of defining how varying one of them can be said to have more impact on the effect than varying the other.

A couple of features of the definition are noteworthy here.  First, the values it yields for causal strengths are critically dependent on choice of population.  Perhaps for a different range of families - the Bushes, Jones, and Einsteins - and a different range of schools - Average, A little below Average, and A little above Average - the results would have been very different, indeed reversed: now we might have found that choice of genes was responsible for more of the variation of IQ in the population than was choice of environment.  In other words, rankings for this new kind of causal magnitude are not independent of choice of sample.

The second feature is that the definition only seems to be applicable to populations rather than individuals.  What if we are interested not in the population as a whole, but only in the IQ of Johnny Smith at UCSD?  ANOVA offers no way of assessing which of genes and environment was more important with regards to little Johnny’s IQ specifically; rather, it can only say which was more important across the whole population of which little Johnny is only one member.  But as a remedy for this limitation, [Sober 1988] provides a method for extending the technique to singleton cases.  This we can achieve, in essence, by specifying a personalised population of counterfactuals in which to embed little Johnny’s actual IQ.  As it were, we can just replace the actual population with an imaginary counterfactual one, before then applying the same statistical technique as before.  Which counterfactuals to choose would be a pragmatic matter, dependent on context.  But once we have decided on little Johnny’s own particular counterfactual population of genes-environment combinations, we could then use ANOVA to calculate what would have been the most important cause - in that counterfactual population.  And this would then be the answer to the singleton problem, in other words to what was most important for little Johnny specifically.

So where are we now?  In physics, it seems there are no problems or ambiguities.  In biology, by contrast, one understanding of causal magnitude seems to make the question meaningless.  However, a second understanding of it can still be achieved, albeit only indirectly via the technique of analysis of variance across a population, whether that be an actual population, or - for the singleton case - one of counterfactuals.  Biologists are smart people, and so perhaps this is just the best response to complications specific to their subject.  Perhaps, with [Sober 1988], we should conclude that: ‘there is no such thing as the way science apportions causal responsibility; rather, we must see how different sciences understand this problem differently’ (p304).  But I want to reject this conclusion.  My opinion, on the contrary, is that a unified account across sciences of causal magnitude is possible, and that once we have it we can see that the apparently divergent cases of physics and biology are in fact merely different manifestations of the same underlying principle.  Moreover, we shall then also be able to see that the analysis of variance, despite its initial plausibility, and despite its status as orthodoxy in biology, is in fact wholly unsuitable for the task of defining causal magnitude.

3) A new dichotomy

Holmes and Watson finally confront Moriarty, Holmes draws his revolver, and shoots him dead.  How important a cause of Moriarty’s death was Holmes’s shot?  ‘Very important’ would seem to be the obvious answer.  But suppose Watson too had a revolver, and that if Holmes had not already done so then Watson would have shot Moriarty himself?  It can be argued now that Holmes’s shot actually made no difference, since whether or not he personally fires, either way Moriarty ends up dead.  So it seems there are actually two distinct understandings of causal strength: according to one of them Holmes’s shot was important, while according to the other it was not.
Causal modelling is ubiquitous in science, and indeed everyday life.  It often rests on the notion of causal strength, and on the related one of some causes being more or less important than others.  Yet, as we are now seeing, it is in fact not always so clear just what we mean by these things.

We shall work now from the Homes-Moriarty example, and then afterwards see how that bears on the physics and biology cases.  Let us label the first sense of causal magnitude, according to which Holmes’s shot was an important cause of Moriarty’s death, causal potency - or PM, for ‘potency-magnitude’.  The second, according to which his shot made no difference because Watson would have shot anyway, we shall label ‘difference-magnitude‘, or DM.  If Watson had not been present, Holmes’s shot would indeed have made a difference, and so our DM sense of causal strength would have given it a high score, just like the PM sense.  In other words, the presence or absence of Watson changes the DM, but leaves the PM unaffected.  This confirms that the two are indeed distinct.

Without further ado, let us provide more formal definitions of PM and DM.  Begin with DM.  What difference does a cause make?  The definition of this must include some specification of what the world would have been like if the cause in question had not operated.  For instance, if Holmes had not fired, then Watson would have done anyway.  Label the cause at issue 'C', so in this example C = Holmes's shot.  Label the relevant effect 'E', so here E = Moriarty's death.  We want some specification of the 'alternative' counterfactual cause, i.e. of what would have happened had Holmes not fired.  Label that 'C1', so here C1 = Watson's shot.  Lastly, we shall need some term to represent all the implicit background conditions, such as that all the men were in the same room, that Holmes and Watson knew how to fire their guns, that the bullets were indeed lethal to humans, etc etc.  Label these assumptions 'W', for the state of the whole world just excluding our specific causes of interest C and C1.  Then we can define the DM as follows:


DM of C relative to the counterfactual C1 = (E|C&W) - (E|C1&W)

(In this paper, we shall ignore the issue of other possible formulations, e.g. using the quotient rather than difference of the effects.)  Note that any assignation of DM is therefore only ever relative to some choice of counterfactual C1.  There is no such thing as some 'absolute' DM defined independently of counterfactual context (or rather there is, but this is what we call PM - more on which presently).  The idea of a cause 'making a difference' surely presupposes some context of comparison - 'made a difference' relative to what? [[2]]
In our Holmes-Moriarty example, label Moriarty’s death to be an effect of value 1, and his survival one of value 0.  Then, for the case when Watson would have shot Moriarty anyway, Moriarty dies whether or not Holmes fires, in other words: (E|C&W) - (E|C1&W) = 1 - 1 = 0.  The formula yields a DM for Holmes's shot of zero, as desired.

Next, move on to our other kind of causal magnitude, PM.  Our definition means that the value of DM will vary according to which baseline counterfactual C1 we happen to choose to compare it against, which implies in turn that a cause may have many different DM values, depending on the context of comparison.  Moreover, DM is always potentially dependent on ‘external’ factors and therefore ‘non-local’ in [Sober 1988]'s sense.  Thus, for instance, the DM magnitude of Holmes‘s shot at Moriarty, depends crucially on whether or not the third party Watson happened to be present at the time.  By contrast, the concept of causal potency intuitively seems to be something intrinsic and local.  Nevertheless, I propose that for our purposes PM is also adequately definable using the same apparatus of counterfactuals.  In particular, the potency of a causal input can be defined by reference to the specific counterfactual of that input being totally absent, with no other input taking its place.  So, in contrast to DM, for PM the 'population' of acceptable counterfactuals can now only ever have one member - the possible world exactly the same as the actual one in all respects, except that the particular cause in question is absent.  

So for E = effect, C = cause, and W = the rest of the world in addition to C, we can define the causal potency of C as follows: 


PM of C = (E|C&W) - (E|W). [[3]]
Despite PM’s locality and lack of ambiguity, its definition is still in the form of our DM definition earlier - as it were, ‘how much difference’ does a cause make compared to its not being there at all?  We can think of PM as being just a special case of DM, with the feature that its particular choice of counterfactual happens to imply that PM is always determined locally.  So to speak, the only difference is that we have now set the counterfactual 'C1' to be zero, or absent.  In this sense, our treatment of DM and PM is thereby analytically unified.

As a result, we can think of any DM as being just the difference between two PMs.  So, for example, the DM of some C with respect to C1, is also just the PM of C minus the PM of C1:  


DM of C with respect to C1 



= (E|C&W) - (E|C1&W)

 

= [(E|C&W) - (E|W)] - [(E|C1&W) - (E|W)]



= [PM of C] - [PM of C1]

Moreover, a PM can itself be understood as a limiting case of DM.  Thus, the PM of some C can be described as the PM of C minus the PM of no cause at all, i.e. described as a DM:


PM of C



= (E|C&W) - (E|W)



= [(E|C&W) - (E|W)] - [(E|W) - (E|W)]



= [PM of C] - [PM of no cause]



= DM of C with respect to no cause, by the result of the previous paragraph

To be sure, there may exist more than one sense of causal strength.  And to be sure, which exact one is deemed most relevant may well depend on context-specific pragmatic factors.  But we conclude that some general analysis of the notion is still possible, and is able to clarify exactly what is left to these pragmatic factors (i.e. the choice of counterfactual), and equally what is not (i.e. the general structure of our definition).

4) Applying DM and PM to the cases from physics and biology

Return to our Newtonian particle example.  What is the causal magnitude here of, say, gravity?  It is quickly clear that the DM and PM senses of causal magnitude will coincide in this case.  Thus, the PM of C where C = gravity would be yielded by:


PM of C = (E|C&W) - (E|W)


= (the particle’s motion with gravity) - (the particle’s motion without gravity)

And the DM of C = gravity relative to C1 = no gravity is:


DM of C relative to the counterfactual C1 = (E|C&W) - (E|C1&W)


= (the particle’s motion with gravity) - (the particle’s motion with no gravity)

- in other words, exactly the same.

The two could diverge if we adopted a different choice of counterfactual C1.  Suppose we were comparing the strength of gravity on Earth with that on the moon.  Then C would be the Earth’s gravity as before, but C1 would be some lesser but now non-zero alternative level of gravity, corresponding to its strength on the moon.  Now the calculation would run:


DM of C relative to the counterfactual C1 = (E|C&W) - (E|C1&W)


= (the particle’s motion with Earth gravity) - (the particle’s motion with moon gravity)

Intuitively, DM answers the question ‘how much difference does the Earth’s gravity make relative to some other level of gravity?’  PM, as explained, is answering instead the different question ‘how much difference does the Earth’s gravity make compared to no gravity at all?’  Any divergence between the two is entirely down to choice of counterfactual.  Often, as in the way we originally set up the Newtonian particle example, ‘C1’ will be zero and so the choices of counterfactual coincide, in which case so will DM and PM.

This explains why the issue of causal strength seems so unproblematic in the case of physics, and indeed in many everyday examples too.  But in social science, for instance, the appropriate choice of counterfactual is often far from obvious.  And as we saw, complications also arise in biology – so return now to our case concerning genetic and environmental influences on IQ.  Suppose first we are concerned with the singleton case of little Johnny.  What does our PM say here?  For C = environment (say):


PM of C = (E|C&W) - (E|W)


= (little Johnny’s IQ with genes and environment) - (little Johnny’s IQ with genes and no environment)


= (little Johnny’s IQ) - 0


= little Johnny’s IQ  [[4]]
And for C = genes, we get an exactly analogous calculation.  Therefore genes and environment each have equal PMs - both have ‘full potency’. [[5]]
So the question of how much contribution each of genes and environment made to IQ, is now well-defined.  And although the answer we get may be trivial, it seems to me that it is nevertheless certainly not ‘meaningless’, contrary to how it is usually dismissed.

Turn now to DM.  Refer back to Table 1, and consider again the case of little Johnny Smith, student at UCSD.  That particular gene-environment combination gives him an IQ of 145.  First up, what is the DM of his genes?  Let C = the Smith genotype, and let C1 = the average of the two alternative genotypes, Brown and Jones. [[6]]  Then:


DM of Smith genes C relative to the counterfactual Brown/Jones genes C1 


= (E|C&W) - (E|C1&W)


= 145 - 0.5(140 + 135)


= 7.5

Verbally, little Johnny’s genes made a difference of +7.5 to his IQ.

The analogous calculation for his environment is:


DM of UCSD environment C relative to the counterfactual Bad/Average school environment C1

= (E|C&W) - (E|C1&W)


= 145 - 0.5(115 + 85)


= 45

Verbally, little Johnny’s environment made a difference of +45 to his IQ.  Therefore the environmental DM is much larger than the genetic one in this case, as it should be.  

Which is more important, genes or environment?  We saw that there seems to be a duality in our understanding of causal strength in the biological context.  On one understanding the environment is more important (for the particular population of our example), while on the other the question is meaningless.  Our DM/PM dichotomy now captures this duality.  DM, on the one hand, captures the sense in which varying the environment made more difference to IQ scores than did varying the genes.  PM, on the other hand, captures the sense in which the two inputs are equally and inseparably necessary to any IQ at all.  Moreover it does this without intellectually quitting and throwing its hands in the air to declare the question ‘meaningless’.

5) The case against analysis of variance, part I

In a short paper like this one there is really space only to outline the main themes.  Among topics we do not discuss fully (or at all) are: interaction between causal inputs, and the relevance or otherwise of additive causal composition; whether general, context-independent causal potencies are definable; the mathematical details of the ANOVA technique; the issue of locality; the distinction between singleton and group problems; and the relation between causal magnitude and causation generally.  But there is one promissory note, so to speak, that to some extent we shall make good on now - namely, to demonstrate that the standard biological technique of analysis of variance, outlined in section 2, is not an appropriate tool for determining causal strength.

ANOVA was meant to capture the second sense of causal strength, in which genes and environment were not trivially of the same importance - so it is a competitor to our DM rather than PM.  Recall again Table 1, showing the IQ scores associated with various gene-environment combinations.  Both our DM and ANOVA agreed that environment was the more important causal factor in this example.  So there seemed nothing objectionable about ANOVA at that stage, but its apparent satisfactoriness in this example in fact conceals several fundamental flaws.  We shall now discuss perhaps the two most important of them, the first of them now and the second in the following section.

Consider a simple decision problem.  I am a farmer stuck with an old greenhouse and an old breed of plant.  My yield per plant at the moment is 4 units.  Suppose that I have a choice between two equally expensive improvements, but that I can only afford one of them.  Of course, I shall choose the one that improves my yield the most, that is the one with the greater causal strength.  The first alternative is to replace my old greenhouse with a new one, which would improve the yield to 6.  The second is to leave my greenhouse alone, and instead replace my old breed of plant with a genetically modified new breed.  Doing the latter would improve my yield to 8.  Which of the improvements should I spend my money on?  Obviously, I should spend it on the new plant breed rather than the new greenhouse.  Our DM definition represents this successfully:

1) DM of new plant breed C relative to the old plant breed C1

= (E|C&W) - (E|C1&W)


= 8 - 4


= 4

While 2) DM of new greenhouse C relative to the old greenhouse C1

= (E|C&W) - (E|C1&W)


= 6 - 4


= 2

Therefore genes has the higher DM in this case, and the farmer is correctly recommended to invest in the new plant breed rather than the new greenhouse.

So far, so straightforward.  But suppose that the full table of yields is as follows:

Table 2



greenhouses




old
new


MA

genes
old 
4
6


5


genes
new
8
2


5


MA

6
4 
   grand mean: 5

The DM calculations remain as stated.  But now consider what an ANOVA analysis would say here.  The sum of squares across the genetic MAs is zero, whereas that across the greenhouse ones is 2.  Therefore ANOVA is forced to conclude that it is the environmental input that is the more important cause here, contrary to the DM calculation and contrary to what seems like common sense.  It must actually advise us to change our greenhouse rather than plant breed, since it is the former that is calculated to have greater causal magnitude.  What has happened?

The spanner in the works is of course the very low yield of 2 scored by the combination of new genes and new greenhouse, due to some strongly negative interactive effect.  The key point is that this interactive effect should be irrelevant to our decision here, as the farmer does not have the money to change both his (or her) inputs.  We are concerned only with how much difference each of the new inputs makes compared to the original set-up.  When defining the impact of the new greenhouse, we of course did this while holding constant the other factor, i.e. the genes.  This is just the logic of controlled experiment - when assessing the impact of a given cause, one tries to hold constant all other causally relevant factors.  Thus when assessing the impact of throwing a brick at a window, we compare the smashed window to one in a situation where the brick had not been thrown.  We do not compare it to one where now a child attacked the window with a catapult instead, since then the causal impact of throwing the brick would of course be mixed up with that of the child‘s catapult.  Similarly here, when calculating the impact of switching to a new greenhouse, the one thing we surely want to avoid is changing the other input too.  But that is just what ANOVA does.  By assessing the overall variances it necessarily incorporates the irrelevant bottom-right-hand cell, leading in this case to its perverse pro-greenhouse advice.  This therefore cannot be a satisfactory procedure for defining causal strength.

It might be objected that this is an unfair attack, on the grounds that ANOVA is supposed only to be applicable to population-level problems, not to singleton ones like this.  Perhaps our critique applies only to [Sober 1988]’s extension of ANOVA to singleton cases, and not to the classical biologists’ procedures?  But it turns out that, as it were, an inverse problem will apply at the population level.  Given limited space, it is not easy to explain the group case fully, but I shall try to give an outline of it.

What would a DM look like in a group case?  In essence, the definition is the same, namely (E|C&W) - (E|C1&W).  But now the effect term E should be understood not as (for instance) the IQ of an individual person, but rather as the total (or - equivalently up to renormalisation - average) IQ across the population.  The interpretation of C and C1 will also now be different.  C refers to the distribution of the cause in the actual population, for example perhaps in the case of environment a one-third weighting on each of Bad, Average and UCSD schools.  And C1 would now refer to the distribution of the cause in some counterfactual population we are comparing the actual one against.  Perhaps in this counterfactual population, almost half the people go to each of Bad and Average schools and only one-tenth go to UCSD.  The ‘population-DM’ would then be how much difference it had made to IQ scores changing the distribution of schooling from one-tenth UCSD to one-third UCSD.  So before, with the singleton DM, we were concerned with the difference between IQs at individual schools, for instance between UCSD and Bad/Average schools.  But now, with the group DM, we are concerned with comparing different population profiles of schooling, for instance - for a key of (UCSD, Average, Bad) - comparing the average IQs in the populations described by the weighting schemes (0.33, 0.33, 0.33) and (0.10, 0.45, 0.45).

We could now draw up a new table of IQ scores, this time representing those achieved in different populations, that is in different combinations of gene and school distributions.  For example, perhaps a table like this:

Table 3

population school profiles:

A
B
C



population gene

X
130
111
139

profiles:


Y
121
97
107




Z
88
129
89

A, B and C would now refer to different possible weightings across the three types of school.  Perhaps A is the weighting in the actual population, namely one-third on each school, while B and C are two alternative weighting schemes.  Similarly, X, Y and Z might be three different possible weightings across the three families, again with X, say, being the equal one-third weightings characteristic of our actual toy society.

It is now easy to see that the DM of a population is exactly analogous in form to that of an individual.  Suppose that the X-A combination represents the actual population, hence that the actual average IQ score is 130.  What is the DM of genes in this society?  As ever, it depends on which counterfactual we are comparing it against.  The DM of genes relative to the counterfactual gene distribution Y would be given by 130 - 121 = 9.  Relative to the counterfactual distribution Z, the actual genes profile makes a bigger difference, namely 130 - 88 = 42.  And the DMs for the environment could be worked out similarly, along the top row.  The important point is that, as ever, the DM scores would vary depending on which counterfactual was chosen.

But the traditional ANOVA definition, by contrast, would offer no such flexibility.  Rather, the causal strength of genes in the actual population is calculated and then can only ever take this one value.  There is no mechanism for it varying with choice of counterfactual; instead ANOVA simply never even incorporates the notion of a counterfactual.  Its calculations of causal magnitude are thus extremely inflexible - and unsatisfactorily so.  Suppose the government, Singapore-style, wanted to know how to increase its population’s average IQ score - should it target genes or environment?  Surely the answer would be critically dependent on what the available alternative genetic and environmental distributions were.  If the alternative genetic distributions all made little difference to IQ compared to the current one, then policy should concentrate on the schools.  If, on the other hand, the alternative genes made a lot of difference, then of course policy should presumably concentrate instead on eugenics.  But ANOVA could only ever inflexibly give a recommendation one way, regardless of which case we were in.  In other words, in one of these cases its advice must be wrong.  The point is that ANOVA makes a one-off judgment based on the actual range of inputs that happen to obtain in the population now, but the impact on IQ scores - i.e. the causal magnitude - of a government intervention would depend critically on the choice of comparison class, in other words precisely on the issue that ANOVA ignores.

Summing up, ANOVA applied to singleton cases (via [Sober 1988]’s method of counterfactuals) pays heed to factors that are not relevant, while ANOVA applied to group cases pays no heed to factors that are relevant.  So in neither circumstance can it elucidate the strengths of causes satisfactorily.

6) The case against analysis of variance, part II
The second major flaw is, so to speak, ANOVA’s concentration on variance rather than means.  This problem applies equally both to singleton and group problems, but we shall only go through a singleton case here.  Suppose that our toy society’s IQ results had been rather different, and instead looked like this:

Table 4



UCSD

Average
Bad


MA
Smith

108

102

96


102

Jones

106

100

94


100

Brown

98

92

86


92

MA

104

98

92
     grand mean: 98

Focus again on little Johnny Smith at UCSD.  Which is the more important cause of his IQ score of 108, genes or environment?  First, we calculate the environmental DM exactly as usual, thus:


DM of UCSD environment C relative to the counterfactual Bad/Average school environment C1

= (E|C&W) - (E|C1&W)


= 108 - 0.5(102 + 96)


= 9

And similarly for the genetic DM:


DM of Smith genes C relative to the counterfactual Brown/Jones genes C1 


= (E|C&W) - (E|C1&W)


= 108 - 0.5(106 + 98)


= 6

Thus, relative to the stated alternatives, environment is again the more important cause (in the DM sense) of little Johnny’s IQ.

On the ANOVA calculation, we as usual calculate the variances across the marginal averages (MAs).  The sum of squares across the environmental MAs is 72, that across the genetic ones 56, indicating of course (given the equal sample sizes of 3) that the variance is higher in the former case.  Therefore environment is the more responsible for the variation in IQ scores in this population, and so (as the biologists would interpret this) is therefore the more important cause.  Thus on this, for these figures, ANOVA and our DM agree.

But now consider the same table, only with a slight adjustment, namely that the bad and average schools perform equally:

Table 5



UCSD

Average
Bad


MA
Smith

108

99

99


102

Jones

106

97

97


100

Brown

98

89

89


92

MA

104

95

95
     grand mean: 98

From the point of view of little Johnny Smith at UCSD there is no difference, since the average of the two alternatives is the same as before.  In other words, the only change is in the internal distribution of the counterfactuals C1.  Which is the more important cause of little Johnny’s IQ score now, genes or environment?  The DM calculations are exactly as before, thus:


DM of UCSD environment C relative to the counterfactual Bad/Average school environment C1

= (E|C&W) - (E|C1&W)


= 108 - 0.5(99 + 99)


= 9

And similarly for the genetic DM:


DM of Smith genes C relative to the counterfactual Brown/Jones genes C1 


= (E|C&W) - (E|C1&W)


= 108 - 0.5(106 + 98)


= 6

As we would expect, the results are unchanged.  From little Johnny’s point of view, going to UCSD rather than the alternative schools still makes exactly as much difference as it did before.  

The situation is very different with ANOVA though.  Calculating the sums of squares across Table 5’s marginal averages, we see that genes score 56 (the same as before, since its MAs are unchanged), but environment now scores only 54.  Therefore ANOVA’s ranking of the two causes has reversed.  Before, environment was adjudged the more important; now it is genes.

Can this reversal of ranking be justified?  I do not think so.  When asking how much difference it made choosing UCSD instead of other schools, we surely are not particularly interested in how much those other schools themselves vary in their quality.  Thus it is (on average) certainly incorrect advice to suggest that little Johnny would be less badly off switching schools than switching genes - yet in this second case ANOVA is committed to saying just this.  On an analogous theme, when drawing up such a table in the first place we would presumably fill in for each school-genes combination the average of the IQ scores that combination achieved, not the variance of those scores.  Indeed biologists themselves write in average effects in their own tables, and hence are using averages as the raw data on which to perform ANOVA.  In other words, they implicitly concede the point through their own actions - that with respect to causal magnitude, we should be concerned with average effect not variance of effect.  Intuitively, the problem is that ANOVA is designed to pick out variance, which is fine if we are concerned with degree of variability, but which seems less fine if what we are concerned with instead is how much difference a cause makes to the level (not variability) of an effect. [[7]]
In conclusion, ANOVA may indeed be a valuable statistical technique for seeing which of two factors is most responsible for the variation within a population.  But this tells us nothing about which of them has the greater causal magnitude.

Footnotes
1 - We provide only a simplified account of this here, but are not saying anything controversial.  See [Sokal and Rohlf 1969], or any other standard textbook, for more details.

2 - Clearly our definition can yield negative as well as positive values for causal strength, but I do not see this as being particularly problematic.  In a similar way, there is no objection to allowing 'negative causation' generally, i.e. to acknowledging factors that hinder rather than help the production of an effect.

3 - Obviously this definition of causal potency is hardly original, to say the least.  [Sober et al 1992] argues that problems arise when we try to use it to compare causal potencies.  I think that their position is incorrect, but space is insufficient to explain the (complicated) debate here.

4 - We are assuming here that the background conditions ‘W’ include the genes.  If not, then (E|C&W) would be zero, and hence, relative to this new W, so would be the PM.  The main philosophical point we are making would not be affected though.
5 - It might seem paradoxical that each of the two inputs could individually have full potency, since this appears to imply that together their potencies must add up to more than the effect.  Should they not, as it were, only have half each?  But consider the two inputs’ joint potency: if C = (genes&environment), then the PM = (E|C&W) - (E|W) = (little Johnny’s IQ) - 0 = little Johnny’s IQ.  So no potency is ever calculated to be greater than the total effect, and hence there is no paradox.

6 - As this calculation shows, the DM formula is readily extendable to cases of more than one counterfactual, so long as we specify a weighting across those counterfactuals.  As already mentioned, for simplicity we shall always assume an equal weighting across them.

7 - Perhaps occasionally we may genuinely be interested not in a cause’s ability to produce a high level of effect, but rather in its ability to produce a high variance of effect.  But it turns out that our DM formulation is in fact must better adapted than ANOVA even to these unusual cases, although there is no space to show why here
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